1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Recent advances in the use of metal oxide-based photocathodes for solar fuel production
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/6/2/10.1063/1.4871899
1.
1.US Department of Energy, Office of science, Basic research needs for solar energy utilization, 2005.
2.
2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 3738 (1972).
http://dx.doi.org/10.1038/238037a0
3.
3. S. Marketbuzz, Annual world solar PV market report, San Francisco, CA, 2009.
4.
4. R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation,” J. Photochem. Photobiology C: Photochem. Rev. 11, 179209 (2010).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.02.003
5.
5. F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam, and R. van de Krol, “Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode,” Nat. Commun. 4, 2195 (2013).
http://dx.doi.org/10.1038/ncomms3195
6.
6. A. Heller, “Hydrogen evolving solar cells,” Science 223, 11411148 (1984).
http://dx.doi.org/10.1126/science.223.4641.1141
7.
7. O. Khaselev and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science 280, 425427 (1998).
http://dx.doi.org/10.1126/science.280.5362.425
8.
8. M. GratzelPhotoelectrochemical cells,” Nature 414, 338344 (2001).
http://dx.doi.org/10.1038/35104607
9.
9. D. Chwieduk, “Solar energy utilization,” Opto-Electron. Rev. 12(1), 1320 (2004).
10.
10. N. S. LewisToward cost-effective solar energy use,” Science 315, 798801 (2007).
http://dx.doi.org/10.1126/science.1137014
11.
11. C. Santato, M. Ulmann, and J. AugustynskiPhotoelectrochemical properties of nanostructured tungsten trioxide films,” J. Phys. Chem. B 105, 936940 (2001).
http://dx.doi.org/10.1021/jp002232q
12.
12. C. Santaro, M. Odziemkowski, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications,” J. Am. Chem. Soc. 123, 1063910649 (2001).
http://dx.doi.org/10.1021/ja011315x
13.
13. H. Wang, T. Lindgren, J. He, A. Hagfeldt, and S. E. Lindquist, “Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: Mechanism of electron transport,” J. Phys. Chem. B 104, 56865696 (2000).
http://dx.doi.org/10.1021/jp0002751
14.
14. F. Amano, D. Li, and B. Ohatani, “Fabrication and photoelectrochemical property of tungsten (VI) oxide films with a flake-wall structure,” Chem. Commun. 46, 27692771 (2010).
http://dx.doi.org/10.1039/b926931b
15.
15. K. Sayama, A. Nomura, A. Zou, R. Abe, Y. Abe, and H. Arakawa, “Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light,” Chem. Commun. 2003, 2908.
http://dx.doi.org/10.1039/b310428a
16.
16. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, and H. Sugihara, “Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment,” J. Phys. Chem. B 110, 1135211360 (2006).
http://dx.doi.org/10.1021/jp057539+
17.
17. M. Long, W. Cai, and H. Kisch, “Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4,” J. Phys. Chem. C 112, 548554 (2008).
http://dx.doi.org/10.1021/jp075605x
18.
18. J. Su, L. Guo, S. Yoriya, and C. A. Grimes, “Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting,” Cryst. Growth Des. 10, 856861 (2010).
http://dx.doi.org/10.1021/cg9012125
19.
19. A. Iwase and A. Kudo, “Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution,” J. Mater. Chem. 20, 75367542 (2010).
http://dx.doi.org/10.1039/c0jm00961j
20.
20. Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, “Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting,” J. Phys. Chem. Lett. 1, 26072612 (2010).
http://dx.doi.org/10.1021/jz100978u
21.
21. P. Chatchai, Y. Murakami, S. Kishioka, A. Nosaka, and Y. Nosaka, “Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under light irradiation,” Electrochem. Acta 54, 11471152 (2009).
http://dx.doi.org/10.1016/j.electacta.2008.08.058
22.
22. P. Chatchai, S. Kishioka, Y. Murakami, A. Nosaka, and Y. Nosaka, “Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation,” Electrochem. Acta 55, 592596 (2010).
http://dx.doi.org/10.1016/j.electacta.2009.09.032
23.
23. J. H. Kennedy and K. W. Frese, “Photo-oxidation of water at alpha-Fe2O3 electrodes,” J. Electrochem. Soc. 125, 709714 (1978).
http://dx.doi.org/10.1149/1.2131532
24.
24. R. Shinar and J. H. Kennedy, “Photoactivity of doped alpha-Fe2O3 electrodes,” Sol. Energy Mater. 6, 323335 (1982).
http://dx.doi.org/10.1016/0165-1633(82)90038-7
25.
25. C. Sanchez, M. Hendewerk, K. D. Sieber, and G. A. Somorjai, “Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals,” J. Solid State Chem. 61, 4755 (1986).
http://dx.doi.org/10.1016/0022-4596(86)90005-8
26.
26. C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252, 269290 (1988).
http://dx.doi.org/10.1016/0022-0728(88)80216-X
27.
27. A. Duret and M. Gratzel, “Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis,” J. Phys. Chem. B 109, 1718417191 (2005).
http://dx.doi.org/10.1021/jp044127c
28.
28. N. K. Allam, B. S. Shaheen, and A. M. Hafez, “Layered tantalum oxynitride nanorod array carpets for efficient photoelectrochemical conversion of solar energy: Experimental and DFT insights,” ACS Appl. Mater. Interfaces 6, 46094615 (2014).
http://dx.doi.org/10.1021/am500286n
29.
29. A. K. Shwarsctein, Y. S. Hu, A. J. Forman, G. D. Stucky, and E. W. McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting,” J. Phys. Chem. C 112, 1590015907 (2008).
http://dx.doi.org/10.1021/jp803775j
30.
30. D. K. Zhong and D. R. Gamelin, “Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck,” J. Am. Chem. Soc. 132, 42024207 (2010).
http://dx.doi.org/10.1021/ja908730h
31.
31. J. Brillet, M. Gratzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10, 41554160 (2010).
http://dx.doi.org/10.1021/nl102708c
32.
32. M. Kitano, M. Takeuchi, M. Masaoka, J. M. Thomas, and M. Anpo, “Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts,” Catal. Today 120, 133138 (2007).
http://dx.doi.org/10.1016/j.cattod.2006.07.043
33.
33. M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Takeuchi, M. Ueshima, J. M. Thomas, and M. Anpo, “The effect of chemical etching by HF solution on the photocatalytic activity of visible light-responsive TiO2 thin films for solar water splitting,” Top. Catal. 49, 2431 (2008).
http://dx.doi.org/10.1007/s11244-008-9064-5
34.
34. R. Abe, T. Takata, H. Sugihara, and K. Domen, “The use of TiCl4 treatment to enhance the photocurrent in a TaON photoelectrode under visible light irradiation,” Chem. Lett. 34, 11621163 (2005).
http://dx.doi.org/10.1246/cl.2005.1162
35.
35. R. Nakamura, T. Tanaka, and Y. Nakato, “Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: How does water photooxidation proceed on a metal-oxynitride surface?,” J. Phys. Chem. B 109, 89208927 (2005).
http://dx.doi.org/10.1021/jp0501289
36.
36. C. L. P. Thivet, A. Ishikawa, A. Ziani, L. L. Gendre, M. Yoshida, J. Kubota, F. Tessier, and K. Domen, “Photoelectrochemical properties of crystalline perovskite lanthanum titanium oxynitride films under visible light,” J. Phys. Chem. C 113, 61566162 (2009).
http://dx.doi.org/10.1021/jp811100r
37.
37. R. Abe, M. Higashi, and K. Domen, “Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation,” J. Am. Chem. Soc. 132, 1182811829 (2010).
http://dx.doi.org/10.1021/ja1016552
38.
38. N. Nishimura, B. Raphael, K. Maeda, L. L. Gendre, R. Abe, J. Kubota, and K. Domen, “Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light,” Thin Solid Films 518, 58555859 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.05.094
39.
39. D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota, and K. Domen, “Ta3N5 photoanodes for water splitting prepared by sputtering,” Thin Solid Films 519, 20872092 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.10.055
40.
40. H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, and K. Domen, “Photoresponse of GaN: ZnO electrode on FTO under visible light irradiation,” Bull. Chem. Soc. Jpn. 82, 401407 (2009).
http://dx.doi.org/10.1246/bcsj.82.401
41.
41. M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, and M. M. Al-Jassim, “Phases morphology, and diffusion in CuInxGa1xSe2 thin films,” J. Appl. Phys. 82, 28962905 (1997).
http://dx.doi.org/10.1063/1.366122
42.
42. S. F. Valverde, E. O. Regil, R. V. Alvardo, R. R. Noriega, and O. S. Feria, “Mass spectrometry quantification of hydrogen produced under illumination of P-CuInSe2 and modified surfaces,” Int. J. Hydrogen Energy 22, 581584 (1997).
http://dx.doi.org/10.1016/S0360-3199(96)00196-6
43.
43. V. I. Bodnar, V. A. Ivanov, and V. A. Gaisin, “Spectral properties of CuGaxIn1−xSe2 solid solutions,” J. Appl. Spectrosc. 68, 10161019 (2001).
http://dx.doi.org/10.1023/A:1014311401456
44.
44. J. E. Lisch, R. N. Bhattacharya, G. Teeter, and J. A. Turner, “Preparation and characterization of Cu(In,Ga)(Se,S)2 thin films from electrodeposited precursors for hydrogen production,” Sol. Energy Mater. Sol. Cells 81, 249259 (2004).
http://dx.doi.org/10.1016/j.solmat.2003.11.006
45.
45. J. N. Nian, C. C. Hu, and H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible,”. Int. J. Hydrogen Energy 33, 28972903 (2008).
http://dx.doi.org/10.1016/j.ijhydene.2008.03.052
46.
46. C. C. Hu, J. N. Nian, and H. Teng, “Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3,” Sol. Energy Mater. Sol. Cells 92, 10711076 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.03.012
47.
47. B. S. Shaheen, H. G. Salem, M. A. El-Sayed, and N. K. Allam, “Thermal/Electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production,” J. Phys. Chem. C 117, 1850218509 (2013).
http://dx.doi.org/10.1021/jp405515v
48.
48. N. K. Allam, N. M. Deyab, and N. Abdel Ghany, “Ternary Ti–Mo–Ni mixed oxide nanotube arrays as photoanode materials for efficient solar hydrogen production,” Phys. Chem. Chem. Phys. 15, 12274 (2013).
http://dx.doi.org/10.1039/c3cp52076e
49.
49. T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, “Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films,” J. Mater. Chem. 20, 53195324 (2010).
http://dx.doi.org/10.1039/c0jm00454e
50.
50. D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konaga, and D. Domen, “Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film,” Electrochem. Commun. 12, 851853 (2010).
http://dx.doi.org/10.1016/j.elecom.2010.04.004
51.
51. R. Nashed, F. M. Alamgir, S. S. Jang, Y. Ismail, M. A. El-Sayed, and N. K. Allam, “Bandgap bowing in Ta-W-O system for efficient solar energy conversion: Insights from density functional theory and x-ray diffraction,” Appl. Phys. Lett. 103, 133905 (2013).
http://dx.doi.org/10.1063/1.4823543
52.
52. N. K. Allam and C. A. Grimes, “Formation of vertically oriented TiO2 nanotube arrays in a fluoride-free HCl electrolyte,” J. Phys. Chem. C 111, 1302813032 (2007).
http://dx.doi.org/10.1021/jp073924i
53.
53. N. K. Allam, K. Shankar, and C. A. Grimes, “Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes,” J. Mater. Chem. 18, 23412348 (2008).
http://dx.doi.org/10.1039/b718580d
54.
54. N. K. Allam, K. Shankar, and C. A. Grimes, “A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing,” Adv. Mater. 20, 39423946 (2008).
http://dx.doi.org/10.1002/adma.200800815
55.
55. N. K. Allam and C. A. Grimes, “Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: Photoelectrochemical properties,” Langmuir 25, 72347240 (2009).
http://dx.doi.org/10.1021/la9012747
56.
56. K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K. Choi, and C. A. Grimes, “A review of recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry,” J. Phys. Chem. C 113, 63276359 (2009).
http://dx.doi.org/10.1021/jp809385x
57.
57. N. K. Allam and M. A. El-Sayed, “Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties,” J. Phys. Chem. C 114, 1202412029 (2010).
http://dx.doi.org/10.1021/jp1037014
58.
58. H. A. Hamedani, N. K. Allam, H. Garmestani, and M. A. El-Sayed, “Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties,” J. Phys. Chem. C 115, 1348013486 (2011).
http://dx.doi.org/10.1021/jp201194b
59.
59. R. E. Rettew, N. K. Allam, and F. M. Alamgir, “Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO2 nanotubes,” ACS Appl. Mater. Interfaces 3, 147151 (2011).
http://dx.doi.org/10.1021/am1012563
60.
60. N. K. Allam, Anodically Fabricated Metal Oxide Nanotube Arrays: A Useful Structure for Efficient Solar Energy Conversion (VDM Verlag Dr. Müller, 2011).
61.
61. M. Woodhouse and B. A. Parkinson, “Combinatorial approach for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev. 38, 197210 (2009).
http://dx.doi.org/10.1039/b719545c
62.
62. N. Serpone and A. V. Emeline, “Semiconductor photocatalysis past, present, and future outlook,” J. Phys. Chem. Lett. 3, 673677 (2012).
http://dx.doi.org/10.1021/jz300071j
63.
63. K. Rajeshwar, “Conversion and environmental remediation using inorganic semiconductor-liquid interface: The road traveled and the way forward,” J. Phys. Chem. Lett. 2, 13011309 (2011).
http://dx.doi.org/10.1021/jz200396h
64.
64. N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103, 1572915735 (2006).
http://dx.doi.org/10.1073/pnas.0603395103
65.
65. A. J. Nozik, “p-n photoelectrolysis cells,” Appl. Phys. Lett. 29, 150153 (1976).
http://dx.doi.org/10.1063/1.89004
66.
66. J. E. Turner, M. Hendewerk, J. Parmeter, D. Neiman, and G. A. Somorjai, “The characterization of doped iron oxide electrodes for the photodissociation of water stability, optical, and electronic properties,” J. Electrochem. Soc. 131, 17771783 (1984).
http://dx.doi.org/10.1149/1.2115959
67.
67. O. Khaselev and J. A. Turner, “Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting,” J. Electrochem. Soc. 145, 33353339 (1998).
http://dx.doi.org/10.1149/1.1838808
68.
68. L. M. Peter, “Dynamic aspects of semiconductor photoelectrochemistry,” Chem. Rev. 90, 753769 (1990).
http://dx.doi.org/10.1021/cr00103a005
69.
69. D. Stievenard, X. Boddaert, and J. C. Bourgoin, “Irradiation-induced defects in p-type GaAs,” Phys. Rev. B 34, 40484058 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4048
70.
70. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110, 64466473 (2010).
http://dx.doi.org/10.1021/cr1002326
71.
71. C. M. McShane and K. S. Choi, “Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement,” Phys. Chem. Chem. Phys. 14, 61126118 (2012).
http://dx.doi.org/10.1039/c2cp40502d
72.
72. U. A. Joshi and P. A. Maggard, “CuNb3O8: A p-type semiconducting metal oxide photoelectrode,” J. Phys. Chem. Lett. 3, 15771581 (2012).
http://dx.doi.org/10.1021/jz300477r
73.
73. C. Y. Chiang, Y. Shin, K. Aroh, and S. Ehrman, “Copper oxide photocathodes prepared by a solution based process,” Int. J. Hydrogen Energy 37, 82328239 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.02.049
74.
74. H. Tang, M. A. Matin, H. Wang, S. Sudhakar, L. Chen, M. M. Al-Jassim, and Y. Yan, “Enhancing the stability of CuO thin film photoelectrodes by Ti alloying,” J. Electron. Mater. 41, 30623067 (2012).
http://dx.doi.org/10.1007/s11664-012-2194-3
75.
75. Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, and Y. Tong, “Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties,” Electrochim. Acta 62, 17 (2012).
http://dx.doi.org/10.1016/j.electacta.2011.10.106
76.
76. C. A. N. Fernando, L. L. A. De Silva, R. M. Mehra, and K. Takahashi, “Junction effects of p-Cu2O photocathode with layers of hole transfer sites (Au) and electron transfer sites (NiO) at the electrolyte interface,” Semicond. Sci. Technol. 16, 433439 (2001).
http://dx.doi.org/10.1088/0268-1242/16/6/303
77.
77. Z. Zhang and P. Wang, “Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy,” J. Mater. Chem. 22, 24562464 (2012).
http://dx.doi.org/10.1039/c1jm14478b
78.
78. P. Zhang, A. Kleiman-Shwarsctein, Y. S. Hu, J. Lefton, S. Sharma, A. J. Forman, and E. McFarland, “Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD,” Energy Environ. Sci. 4, 10201028 (2011).
http://dx.doi.org/10.1039/c0ee00656d
79.
79. A. Kay, I. Cesar, and M. Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 Films,” J. Am. Chem. Soc. 128, 1571415721 (2006).
http://dx.doi.org/10.1021/ja064380l
80.
80. I. Cesar, K. Sivula, A. Kay, R. Zborik, and M. Gratzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” J. Phys. Chem. C 113, 772782 (2009).
http://dx.doi.org/10.1021/jp809060p
81.
81. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature 453, 638641 (2008).
http://dx.doi.org/10.1038/nature06964
82.
82. A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, “Single crystalline ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates,” Appl. Phys. Lett. 75, 26352637 (1999).
http://dx.doi.org/10.1063/1.125102
83.
83. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10, 456461 (2011).
http://dx.doi.org/10.1038/nmat3017
84.
84. Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, and D. Wang, “Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting,” J. Am. Chem. Soc. 134, 55085511 (2012).
http://dx.doi.org/10.1021/ja300319g
85.
85. A. P. Bhirud, S. D. Sathaye, R. P. Waichal, L. K. Nikam, and B. B. Kale, “An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production,” Green Chem. 14, 27902798 (2012).
http://dx.doi.org/10.1039/c2gc35519a
86.
86. K. Sun, K. Madsen, P. Andersen, W. Bao, Z. Sunand, and D. Wang, “Metal on metal oxide nanowire co-catalyzed Si photocathode for solar water splitting,” Nanotechnology 23, 194013194023 (2012).
http://dx.doi.org/10.1088/0957-4484/23/19/194013
87.
87. L. Lin, D. Lele, W. Fuyu, L. Can, and W. Mei, “Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO,” Chem. Commun. 48, 988990 (2012).
http://dx.doi.org/10.1039/c2cc16101j
88.
88. T. Nann, S. K. Ibrahim, P. M. Woi, S. Xu, J. Ziegler, and C. J. Pickett, “Water splitting by visible light: A nanophotocathode for hydrogen production,” Angew. Chem. 49, 15741577 (2010).
http://dx.doi.org/10.1002/anie.200906262
89.
89. U. A. Joshi, A. M. Palasyuk, and P. A. Maggard, “Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode,” J. Phys. Chem. C 115, 1353413539 (2011).
http://dx.doi.org/10.1021/jp204631a
90.
90. N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116, 64596466 (2012).
http://dx.doi.org/10.1021/jp210130v
91.
91. N. T. Hahn, H. Ye, D. W. Flaherty, A. J. Bard, and C. B. Mullins, “Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation,” ACS Nano 4, 19771986 (2010).
http://dx.doi.org/10.1021/nn100032y
92.
92. N. T. Hahn and C. B. Mullins, “Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes,” Chem. Mater. 22, 64746482 (2010).
http://dx.doi.org/10.1021/cm1026078
93.
93. Y. Liang, T. Tsubota, L. P. A. Mooij, and R. van de Krol, “Highly improved quantum efficiencies for thin film BiVO4 photoanodes,” J. Phys. Chem. C 115, 1759417598 (2011).
http://dx.doi.org/10.1021/jp203004v
94.
94. S. P. Berglund, D. W. Flaherty, N. T. Hahn, A. J. Bard, and C. B. Mullins, “Photoelectrochemical oxidation of water using nanostructured BiVO4 films,” J. Phys. Chem. C 115, 37943802 (2011).
http://dx.doi.org/10.1021/jp1109459
95.
95. L. Fuoco, U. A. Joshi, and P. A. Maggard, J. Phys. Chem. C 116, 1049010497 (2012).
http://dx.doi.org/10.1021/jp300267v
96.
96. Y. Matsumoto, M. Omae, K. Sugiyama, and E. I. Sato, “New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22,” J. Phys. Chem. 91, 577581 (1987).
http://dx.doi.org/10.1021/j100287a018
97.
97. H. V. Spijker, D. Simon, and F. Ooms, “Photocatalytic water splitting by means of undoped and doped La2CuO4 photocathodes,” Int. J. Hydrogen Energy 33, 64146419 (2008).
http://dx.doi.org/10.1016/j.ijhydene.2008.08.023
98.
98. S. Kawasaki, K. Nakatsuji, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippmaa, K. Mase, and A. Kudo, “Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation,” Appl. Phys. Lett. 101, 033910033914 (2012).
http://dx.doi.org/10.1063/1.4738371
99.
99. S. Kawasaki, K. Akagi, K. Nakatsuji, S. Yamamoto, I. Matsuda, Y. Harada, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippmaa, C. Sakai, H. Niwa, M. Oshima, K. Iwashina, and A. Kudo, “Elucidation of Rh-induced in-gap states of Rh:SrTiO3 visible-light-driven photocatalyst by soft X-ray spectroscopy and first-principles calculations,” J. Phys. Chem. C 116, 2444524448 (2012).
http://dx.doi.org/10.1021/jp3082529
100.
100. K. Koumoto, H. Koduka, and W. S. Seo, “Thermoelectric properties of single crystal CuAlO2 with a layered structure,” J. Mater. Chem. 11, 251252 (2001).
http://dx.doi.org/10.1039/b006850k
101.
101. A. Jacob, C. Parent, P. Boutinaud, G. Leflem, J. P. Doumerc, A. Ammar, M. Elazhari, and M. Elaatmani, “Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2,” Solid State Commun. 103, 529532 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00224-X
102.
102. M. Trari, A. Bouguelia, and Y. Bessekhouad, “P-type CuYO2 as hydrogen photocathode,” Sol. Energy Mater. Sol. Cells 90, 190202 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.03.003
103.
103. C. G. Read, Y. Park, and K. S. Choi, “Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell,” J. Phys. Chem. Lett. 3, 18721876 (2012).
http://dx.doi.org/10.1021/jz300709t
104.
104. M. A. Marquardt, N. A. Ashmore, and D. P. Cann, “Crystal chemistry and electrical properties of the delafossite structure,” Thin Solid Films 496, 146156 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.316
105.
105. W. C. Sheets, E. Mugnier, A. Barnab, T. J. Marks, and K. R. Poeppelmeier, “Hydrothermal synthesis of delafossite-type oxides,” Chem. Mater. 18, 720 (2006).
http://dx.doi.org/10.1021/cm051791c
106.
106. H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “Transparent p-type conducting oxides: Design and fabrication of p-n heterojunctions,” MRS Bull. 25, 2836 (2000).
http://dx.doi.org/10.1557/mrs2000.148
107.
107. D. A. De Vault, “Method of teaching the electronic structure of the atom,” J. Chem. Educ. 21, 526534 (1944).
http://dx.doi.org/10.1021/ed021p526
108.
108. R. D. Shannon, J. L. Gilson, and R. J. Bouchard, “Single crystal synthesis and electrical properties of CdSnO3, Cd2SnO4, In2TeO6, and CdIn2O4,” J. Phys. Chem. Solids 38, 877881 (1977).
http://dx.doi.org/10.1016/0022-3697(77)90126-3
109.
109. A. N. Banerjee and K. K. Chattopadhyay, Reactive Sputtered Wide Bandgap p-Type Semiconducting Spinal AB2O4 and Delafossite ABO2 Thin Films for “Transparent Electronics” (Springer, London, New York, 2008).
110.
110. F. A. Benko and F. P. Koffyberg, “Opto-electronic properties of CuAlO2,” J. Phys. Chem. Solids 45, 5759 (1984).
http://dx.doi.org/10.1016/0022-3697(84)90101-X
111.
111. M. K. Jayaraj, A. D. Draeseke, J. Tate, and A. W. Sleight, “p-type transparent thin films of CuY1xCaxO2,” Thin Solid Films 397, 244248 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01362-1
112.
112. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yangui, and H. Hosono, “p-type electrical conduction in transparent thin films of CuAlO2,” Nature 389, 939942 (1997).
http://dx.doi.org/10.1038/40087
113.
113. H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, and H. Hosono, “Chemical design and thin film preparation of p-type conductive transparent oxides,” J. Electroceram. 4, 407414 (2000).
http://dx.doi.org/10.1023/A:1009959920435
114.
114. S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, and M. Trari, “Photocatalytic reduction of cadmium over CuFeO2 synthesized by sol-gel,” J. Photochem. Photobiol. 201, 6268 (2009).
http://dx.doi.org/10.1016/j.jphotochem.2008.09.015
115.
115. Y. Bessekhouad, Y. Gabes, A. Bouguelia, and M. Trari, “The physical and photo electrochemical characterization of the crednerite CuMnO2,” J. Mater. Sci. 42, 64696476 (2007).
http://dx.doi.org/10.1007/s10853-006-1250-x
116.
116. Y. Bessekhouad, M. Trari, and J. P. Doumerc, “The physical and photo electrochemical characterization of the crednerite CuMnO2,” Int. J. Hydrogen Energy 28, 4348 (2003).
http://dx.doi.org/10.1016/S0360-3199(02)00023-X
117.
117. A. Derbal, S. Omeiri, A. Bouguelia, and M. Trari, “Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution,” Int. J. Hydrogen Energy 33, 42744282 (2008).
http://dx.doi.org/10.1016/j.ijhydene.2008.05.067
118.
118. S. Omeiri, B. Bellal, A. Bouguelia, Y. Bessekhouad, and M. Trari, “Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal,” J. Solid State Electrochem. 13, 13951401 (2009).
http://dx.doi.org/10.1007/s10008-008-0703-3
119.
119. M. Younsi, A. Aider, A. Bouguelia, and M. Trari, “Visible light-induced hydrogen over CuFeO2 via S2O3 oxidation,” Sol. Energy 78, 574580 (2005).
http://dx.doi.org/10.1016/j.solener.2004.01.012
120.
120. J. Y. Zheng, G. Song, C. W. Kim, and Y. S. Kang, “Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectrochemical properties,” Electrochim. Acta 69, 340344 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.03.011
121.
121. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K.-S. Choi, and C. A. Grimes, “p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation,” Nano Lett. 8, 19061911 (2008).
http://dx.doi.org/10.1021/nl080572y
122.
122. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, and E. W. McFarland, “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis,” Sol. Energy Mater. Sol. Cells 77, 229237 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00343-4
123.
123. F. Qian, G. Wang, and Y. Li, “Solar-driven microbial photoelectrochemical cells with a nanowire photocathode,” Nano Lett. 10, 46864691 (2010).
http://dx.doi.org/10.1021/nl102977n
124.
124. L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Guotz, A. Mishra, P. Bauerle, R. Amal, G. G. Wallace, and A. J. Mozer, “Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device,” Energy Environ. Sci. 5, 94729475 (2012).
http://dx.doi.org/10.1039/c2ee22866a
125.
125. S. Id, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132, 1734317345 (2010).
http://dx.doi.org/10.1021/ja106930f
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/2/10.1063/1.4871899
Loading
/content/aip/journal/jrse/6/2/10.1063/1.4871899
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/6/2/10.1063/1.4871899
2014-04-18
2014-07-26

Abstract

Harvesting solar energy for the production of clean fuel by a photoelectrochemical system is a very attractive, yet a challenging task. This review focuses on the recent efforts done to tailor metal oxide-based photocathode materials for the solar-driven hydrogen production. The materials are classified into three categories: simple oxides, complex oxides, and photocathodes used in p-n self-biased heterojunction cells. Generally, three strategies have been recommended to tailor p-type metal oxide semiconductors to meet the requirements for efficient solar-driven water splitting, namely (1) coating the p-type metal oxide either with a protective layer or a dye, (2) using co-catalyst, and (3) merging the p-type material with an n-type photoanode with the proper optical and electrical properties. In the light of those strategies, the optical, structural, and photoelectrochemical characteristics of such assemblies are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/6/2/1.4871899.html;jsessionid=18nac14rd1mgl.x-aip-live-02?itemId=/content/aip/journal/jrse/6/2/10.1063/1.4871899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recent advances in the use of metal oxide-based photocathodes for solar fuel production
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/2/10.1063/1.4871899
10.1063/1.4871899
SEARCH_EXPAND_ITEM