1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A new modeling approach for graphene based silicon nanowire Schottky junction solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jrse/6/4/10.1063/1.4893433
1.
1. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206209 (2008).
http://dx.doi.org/10.1038/nnano.2008.58
2.
2. X. Li, L. Wang, S. Zhang, H. Lee, and H. Dai, Science 319(5867), 12291232 (2008).
http://dx.doi.org/10.1126/science.1150878
3.
3. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83(2), 407470 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.407
4.
4. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater. 22(25), 27432748 (2010).
http://dx.doi.org/10.1002/adma.200904383
5.
5. L. Zhang, L. Fan, Z. Li, E. Shi, X. Li, H. Li, C. Ji, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, and A. Cao, Nano Res. 4(9), 891900 (2011).
http://dx.doi.org/10.1007/s12274-011-0145-6
6.
6. Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, and G. Qin, ACS Appl. Mater. Interfaces 2(12), 34063410 (2010).
http://dx.doi.org/10.1021/am1007672
7.
7. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature 449(7164), 885889 (2007).
http://dx.doi.org/10.1038/nature06181
8.
8. K. Peng, Small 1, 10621067 (2005).
http://dx.doi.org/10.1002/smll.200500137
9.
9. A. P. Goodey, S. M. Eichfeld, K.-K. Lew, J. M. Redwing, and T. E. Mallouk, J. Am. Chem. Soc. 129(41), 1234412345 (2007).
http://dx.doi.org/10.1021/ja073125d
10.
10. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91(23), 233117 (2007).
http://dx.doi.org/10.1063/1.2821113
11.
11. K.-Q. Peng and S.-T. Lee, Adv. Mater. 23(2), 198215 (2011).
http://dx.doi.org/10.1002/adma.201002410
12.
12. J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, Sol. Energy Mater. Sol. Cells 112, 8490 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.12.046
13.
13. F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H.-C. Yuan, Appl. Phys. Lett. 99(10), 103501 (2011).
http://dx.doi.org/10.1063/1.3636105
14.
14. H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, Appl. Phys. Lett. 98(15), 151116 (2011).
http://dx.doi.org/10.1063/1.3574904
15.
15. O. Gunawan and S. Guha, Sol. Energy Mater. Sol. Cells 93, 13881393 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.02.024
16.
16. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9(3), 239244 (2010).
http://dx.doi.org/10.1038/nmat2635
17.
17. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295(5564), 24252427 (2002).
http://dx.doi.org/10.1126/science.1069156
18.
18. E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 92249225 (2008).
http://dx.doi.org/10.1021/ja8032907
19.
19. T. Stelzner, Nanotechnology 19, 295203 (2008).
http://dx.doi.org/10.1088/0957-4484/19/29/295203
20.
20. V. Sivakov, Nano Lett. 9, 15491554 (2009).
http://dx.doi.org/10.1021/nl803641f
21.
21. G. Fan, H. Zhu, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, and D. Wu, ACS Appl. Mater. Interfaces 3(3), 721725 (2011).
http://dx.doi.org/10.1021/am1010354
22.
22. C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Appl. Phys. Lett. 99(13), 133113 (2011).
http://dx.doi.org/10.1063/1.3643473
23.
23. C. Xie, J. Jie, B. Nie, T. Yan, Q. Li, P. Lv, F. Li, M. Wang, C. Wu, L. Wang, and L. Luo, Appl. Phys. Lett. 100(19), 193103193104 (2012).
http://dx.doi.org/10.1063/1.4711205
24.
24. H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F. Z. Guo, and Y. Watanabe, Phys. Rev. B 79(12), 125437 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125437
25.
25. T. Wakutsu, M. Nakamura, and B. Dóra, Phys. Rev. B 85(3), 033403 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.033403
26.
26. Y. Ni, Y. Chalopin, and S. Volz, Appl. Phys. Lett. 103(6), 061906 (2013).
http://dx.doi.org/10.1063/1.4818341
27.
27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( Wiley, New York, 2007).
28.
28. J. Singh, Physics of Semiconductors and their Heterostructures ( McGraw Hill, 1993).
29.
29. S. L. Chuang, Physics of Photonic Devices ( John Wiley & Sons, 2009).
30.
30. N. H. Rafat, Sol. Energy 80(12), 15881599 (2006).
http://dx.doi.org/10.1016/j.solener.2005.12.004
31.
31. K. K. Ng, Complete Guide to Semiconductor Devices ( McGraw-Hill, 1995).
32.
32. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97(11), 114302 (2005).
http://dx.doi.org/10.1063/1.1901835
33.
33. T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78(8), 085432 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085432
34.
34. L. A. Falkovsky, J. Phys.: Conf. Ser. 129(1), 012004 (2008).
http://dx.doi.org/10.1088/1742-6596/129/1/012004
35.
35. K. Rajkanan, R. Singh, and J. Shewchun, Solid-State Electron. 22(9), 793795 (1979).
http://dx.doi.org/10.1016/0038-1101(79)90128-X
36.
36. N. D. Arora, J. R. Hauser, and D. J. Roulston, IEEE Trans. Electron Devices 29(2), 292295 (1982).
http://dx.doi.org/10.1109/T-ED.1982.20698
37.
37. T. Trupke, M. A. Green, P. Wurfel, P. P. Altermatt, A. Wang, J. Zhao, and R. Corkish, J. Appl. Phys. 94(8), 49304937 (2003).
http://dx.doi.org/10.1063/1.1610231
38.
38. R. F. Pierret, Advanced Semiconductor Fundamentals ( Prentice Hall/Pearson Education, 2003).
39.
39. H. Hasegawa, T. Sato, S. Kasai, B. Adamowicz, and T. Hashizume, Sol. Energy 80(6), 629644 (2006).
http://dx.doi.org/10.1016/j.solener.2005.10.014
40.
40. T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Express 1(5), 051406 (2008).
http://dx.doi.org/10.1143/APEX.1.051406
41.
41. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, Opt. Express 19(S5), A1067A1081 (2011).
http://dx.doi.org/10.1364/OE.19.0A1067
42.
42. L. Lancellotti, T. Polichetti, F. Ricciardella, O. Tari, S. Gnanapragasam, S. Daliento, and G. Di Francia, Thin Solid Films 522, 390394 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.09.040
43.
43. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
44.
44. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9(10), 34303434 (2009).
http://dx.doi.org/10.1021/nl901572a
45.
45. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, ACS Nano 4(5), 26892694 (2010).
http://dx.doi.org/10.1021/nn1005478
46.
46. Y. Yi, W. M. Choi, Y. H. Kim, J. W. Kim, and S. J. Kang, Appl. Phys. Lett. 98(1), 013505 (2011).
http://dx.doi.org/10.1063/1.3534795
47.
47. C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, and S. B. Cronin, Nano Lett. 11(5), 18631867 (2011).
http://dx.doi.org/10.1021/nl104364c
48.
48. L. Zhu, G. Shao, and J. K. Luo, Solid State Sci. 14(7), 857863 (2012).
http://dx.doi.org/10.1016/j.solidstatesciences.2012.04.020
49.
49. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett. 8(9), 26382642 (2008).
http://dx.doi.org/10.1021/nl0808076
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/4/10.1063/1.4893433
Loading
/content/aip/journal/jrse/6/4/10.1063/1.4893433
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/6/4/10.1063/1.4893433
2014-08-20
2015-07-30

Abstract

In this paper, a new approach to model the graphene-based silicon nanowires Schottky junction (SiNWs/G) solar cells taking into account Shockley-Read-Hall, Auger, radiative and surface recombinations is presented. The model results show that the performance of the SiNWs/G solar cells is much better than those of bulk Si/G counterpart solar cells. Then, a particular attention is paid to the effects of the number of graphene layers on the performance of the n- and p-type SiNWs/G solar cells. It is found that the performance of p-type SiNWs/G is more efficient than n-type SiNWs/G solar cell for the monolayer and bilayer graphene. Furthermore, the p-SiNWs/G solar cell parameters as functions of the temperature, doping concentration, and the SiNWs density and filling ratio are investigated. A comparison of our calculated results with published experimental data is shown to be in good agreement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/6/4/1.4893433.html;jsessionid=3nlddajria1jv.x-aip-live-02?itemId=/content/aip/journal/jrse/6/4/10.1063/1.4893433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A new modeling approach for graphene based silicon nanowire Schottky junction solar cells
http://aip.metastore.ingenta.com/content/aip/journal/jrse/6/4/10.1063/1.4893433
10.1063/1.4893433
SEARCH_EXPAND_ITEM