Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. W. Zevenbergen, P. F. Lagasse, and B. L. Edge, Tidal Hydrology, Hydraulics, and Scour at Bridges ( Ayres Associates, 2004).
2. D. Prandle, “ Simple theory for designing tidal power schemes,” Adv. Water Resour. 7(1), 2127 (1984).
3. T. J. Hammons, “ Tidal power,” Proc. IEEE 81(3), 419433 (1993).
4. A. N. Gorban', A. M. Gorlov, and V. M. Silantyev, “ Limits of the turbine efficiency for free fluid flow,” J. Energy Resour. Technol. 123(4), 311317 (2001).
5. S. E. Ben Elghali, M. E. H. Benbouzid, and J. F. Charpentier, “ Marine tidal current electric power generation technology: State of the art and current status,” in Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC) (2007), Vols. 1 and 2, pp. 14071412.
6. L. S. Blunden and A. S. Bahaj, “ Tidal energy resource assessment for tidal stream generators,” Proc. Inst. Mech. Eng., Part A 221(A2), 137146 (2007).
7. I. G. Bryden, S. I. Couch, A. Owen, and G. Melville, “ Tidal current resource assessment,” Proc. Inst. Mech. Eng., Part A 221(A2), 125135 (2007).
8. T. A. Adcock, S. Draper, and T. Nishino, “ Tidal power generation: A review of hydrodynamic modelling,” Proc. Inst. Mech. Eng., Part A (to be published).
9.IEC (2015) TS 62600-201, Marine Energy - Wave, Tidal and Other Water Current Converters - Part 201: Tidal Energy Resource Assessment and Characterization, 2015.
10. Z. Defne, K. A. Haas, H. M. Fritz, L. Jiang, S. P. French, X. Shi, B. T. Smith, V. S. Neary, and K. M. Stewart, “ National geodatabase of tidal stream power resource in USA,” Renewable Sustainable Energy Rev. 16(5), 33263338 (2012).
11. J. Blanchfield, C. Garrett, P. Wild, and A. Rowe, “ The extractable power from a channel linking a bay to the open ocean,” Proc. Inst. Mech. Eng., Part A 222(A3), 289297 (2008).
12. C. Garrett and P. Cummins, “ The power potential of tidal currents in channels,” Proc. R. Soc. A 461(2060), 25632572 (2005).
13. S. Bomminayuni, B. Bruder, T. Stoesser, and K. Haas, “ Assessment of hydrokinetic energy near Rose Dhu Island, Georgia,” J. Renewable Sustainable Energy 4(6), 063107 (2012).
14. M. Lewis, S. P. Neill, P. E. Robins, and M. R. Hashemi, “ Resource assessment for future generations of tidal-stream energy arrays,” Energy 83, 403 (2015).
15. L. S. Blunden and A. S. Bahaj, “ Initial evaluation of tidal stream energy resources at Portland Bill, UK,” Renewable Energy 31(2), 121132 (2006).
16. R. Carballo, G. Iglesias, and A. Castro, “ Numerical model evaluation of tidal stream energy resources in the Ria de Muros (NW Spain),” Renewable Energy 34(6), 15171524 (2009).
17. V. Ramos, R. Carballo, M. Alvarez, M. Sanchez, and G. Iglesias, “ Assessment of the impacts of tidal stream energy through high-resolution numerical modeling,” Energy 61, 541554 (2013).
18. G. Sutherland, M. Foreman, and C. Garrett, “ Tidal current energy assessment for Johnstone Strait, Vancouver Island,” Proc. Inst. Mech. Eng. Part A 221(A2), 147157 (2007).
19. D. A. Brooks, “ The tidal-stream energy resource in Passamaquoddy-Cobscook Bays: A fresh look at an old story,” Renewable Energy 31(14), 22842295 (2006).
20. R. H. Karsten, I. M. McMillan, M. J. Lickley, and R. D. Haynes, “ Assessment of tidal current energy in the Minas Passage, Bay of Fundy,” Proc. Inst. Mech. Eng., Part A 222(A5), 493507 (2008).
21. B. Polagye, M. Kawase, and P. Malte, “ In-stream tidal energy potential of Puget Sound, Washington,” Proc. Inst. Mech. Eng., Part A 223(A5), 571587 (2009).
22. B. Polagye and J. Thomson, “ Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, WA (USA),” Proc. Inst. Mech. Eng., Part A 227(3), 352367 (2013).
23. D. A. Brooks, “ The hydrokinetic power resource in a tidal estuary: The Kennebec river of the central Maine coast,” Renewable Energy 36(5), 14921501 (2011).
24. H. Toniolo, P. Duvoy, S. Vanlesberg, and J. Johnson, “ Modelling and field measurements in support of the hydrokinetic resource assessment for the Tanana river at Nenana, Alaska,” Proc. Inst. Mech. Eng., Part A 224(A8), 11271139 (2010).
25. H. S. Tang, S. Kraatz, K. Qu, G. Q. Chen, N. Aboobaker, and C. B. Jiang, “ High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA,” Renewable Sustainable Energy Rev. 32, 960982 (2014).
26. V. Ramos, R. Carballo, M. Álvarez, M. Sánchez, and G. Iglesias, “ A port towards energy self-sufficiency using tidal stream power,” Energy 71, 432444 (2014).
27. M. R. Swift and W. S. Brown, “ Distribution of bottom stress and tidal energy-dissipation in a well-mixed estuary,” Estuarine, Coastal Shelf Sci. 17(3), 297317 (1983).
28. J. C. Warner, B. Armstrong, R. Y. He, and J. B. Zambon, “ Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system,” Ocean Modell. 35(3), 230244 (2010).
29. M. Olabarrieta, J. C. Warner, and N. Kumar, “ Wave-current interaction in Willapa Bay,” J. Geophys. Res.: Oceans 116, C12014, doi:10.1029/2011JC007387/full (2011).
30. A. Benetazzo, S. Carniel, M. Sclavo, and A. Bergamasco, “ Wave-current interaction: Effect on the wave field in a semi-enclosed basin,” Ocean Modell. 70, 152165 (2013).
31. F. Barbariol, A. Benetazzo, S. Carniel, and M. Sclavo, “ Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling,” Renewable Energy 60, 462471 (2013).
32. D. B. Haidvogel, H. Arango, W. P. Budgell, B. D. Cornuelle, E. Curchitser, E. Di Lorenzo, K. Fennel, W. R. Geyer, A. J. Hermann, L. Lanerolle, J. Levin, J. C. McWilliams, A. J. Miller, A. M. Moore, T. M. Powell, A. F. Shchepetkin, C. R. Sherwood, R. P. Signell, J. C. Warner, and J. Wilkin, “ Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system,” J. Comput. Phys. 227(7), 35953624 (2008).
33. D. Duran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics ( Springer, New York, 1999).
34. Z. Defne, K. A. Haas, and H. M. Fritz, “ Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA,” Renewable Energy 36(12), 34613471 (2011).

Data & Media loading...


Article metrics loading...



Tidal currents are a promising source for future power generation given their periodicity and predictability. Therefore, numerical hydrodynamic models are frequently utilized for resource assessments. However, the relevant scales of the simulations and hence modeling techniques depend on the problem at hand. This paper shows the potential of the grid refinement technique for the assessment of tidal current energy for particular sites given its relatively low computational expense and high accuracy for the regions with the refined resolution. Example applications are described for mapping the tidal resources near two facilities (Portsmouth Naval Shipyard in Maine and Key West Naval Station in Florida) for possible future deployments of Marine Hydro-Kinetic technologies. The grid refinement capability in the coupled ocean-atmosphere-wave-sediment transport modeling system is used to improve the spatial resolution in the regions of interest, and has shown significant advantage over the original simulation results for the tidal power assessment. The numerical simulation results from both the original coarse grids and the refined grids are validated with measured tidal constituents at available locations. This study demonstrates how the enhancement of a model system for a regional tidal energy with grid refinement can assist with the performance of site specific resource assessments with modest computational expense.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd