Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Burman and A. Walker, “ Ocean energy technology overview,” Technical Report No. DOE/GO-102009-2823, U.S. Department of Energy, Federal Energy Management Program, 2009.
2. N. D. Kelley, B. J. Jonkman, G. N. Scott, J. T. Bialasiewicz, and L. S. Redmond, “ The impact of coherent turbulence on wind turbine aeroelastic response and its simulation,” in Windpower 2005 Conference Proceedings (2005).
3. T. Mücke, D. Kleinhaus, and J. Peinke, “ Atmospheric turbulence and its influence on the alternating loads on wind turbines,” Wind Energy 14, 301316 (2011).
4. A. Sathe, J. Mann, T. Barlas, W. A. A. M. Bierbooms, and G. J. W. van Bussel, “ Influence of atmospheric stability on wind turbine loads,” Wind Energy 16, 1013 (2013).
5. F. Oyague, “ Gearbox modeling and load simulation of a baseline 750-kW wind turbine using state-of-the-art simulation codes,” NREL Technical Report No. NREL/TP-500-41160, 2009.
6. A. Morales, M. Wächter, and J. Peinke, “ Characterization of wind turbulence by higher-order statistics,” Wind Energy 15, 391406 (2012).
7. P. Milan, M. Wächter, and J. Peinke, “ Turbulent character of wind energy,” Phys. Rev. Lett. 110, 138701 (2013).
8. L. P. Chamorro and F. Porté-Agel, “ A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129149 (2009).
9. M. Calaf, C. Meneveau, and J. Meyers, “ Large eddy simulation study of fully developed wind-turbine array boundary layers,” Phys. Fluids 22, 015110 (2010).
10. J. Meyers and C. Meneveau, “ Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer,” AIAA Paper 2010-827, 2010.
11. F. Porté-Agel, Y.-T. Wu, H. Lu, and R. J. Conzemius, “ Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms,” J. Wind Eng. Ind. Aerodyn. 99, 154168 (2011).
12. M. J. Churchfield, S. Lee, P. J. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur, “ A large-eddy simulation of wind-plant aerodynamics,” AIAA Paper 2012-537, 2012.
13. A. W. Lavely, G. Vijayakumar, J. G. Brasseur, E. G. Paterson, and M. P. Kinzel, “ Comparing unsteady loadings on wind turbines using TurbSim and LES flow fields,” AIAA Paper 2012-0818, 2012.
14. J. Meyers and C. Meneveau, “ Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms,” J. Fluid Mech. 715, 335358 (2013).
15. D. Mehta, A. H. van Zuijlen, B. Koren, J. G. Holierhoek, and H. Bijl, “ Large eddy simulation of wind farm aerodynamics: A review,” J. Wind Eng. Ind. Aerodyn. 133, 117 (2014).
16. J. M. Jonkman and M. L. Buhl, Jr., “ FAST user's guide,” Technical Report No. NREL/EL-500-38230, National Renewable Energy Laboratory, 2005.
17. S. Gant and T. Stallard, “ Modelling a tidal turbine in unsteady flow,” in Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference (2008), pp. 473479.
18. W. M. J. Batten, M. E. Harrison, and A. S. Bahaj, “ Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines,” Philos. Trans. R. Soc. A 371, 20120293 (2013).
19. M. E. Harrison, W. M. J. Batten, L. E. Myers, and A. S. Bahaj, “ Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines,” IET Renewable Power Gener. 4, 613627 (2010).
20. J. H. Lee, S. Park, D. H. Kim, S. H. Rhee, and M.-C. Kim, “ Computational methods for performance analysis of horizontal axis tidal stream turbines,” Appl. Energy 98, 512523 (2012).
21. X. Sun, J. P. Chick, and I. G. Bryden, “ Laboratory-scale simulation of energy extraction from tidal currents,” Renewable Energy 33, 12671274 (2008).
22. S. R. Turnock, A. B. Phillips, J. Banks, and R. Nicholls-Lee, “ Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines,” Ocean Eng. 38, 13001307 (2011).
23. R. Malki, A. J. Williams, T. N. Croft, M. Togneri, and I. Masters, “ A coupled blade element momentum-computational fluid dynamics model for evaluating tidal stream turbine performance,” Appl. Math. Modell. 37, 30063020 (2013).
24. M. J. Churchfield, Y. Li, and P. J. Moriarty, “ Large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines,” Philos. Trans. R. Soc. A 371, 20120421 (2013).
25. M. G. Gebreslassie, G. R. Tabor, and M. R. Belmont, “ Investigation of the performance of a staggered configuration of tidal turbines using CFD,” Renewable Energy 80, 690698 (2015).
26. S. Kang, I. Borazjani, J. A. Colby, and F. Sotiropoulos, “ Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine,” Adv. Water Resour. 39, 3343 (2012).
27. S. Kang, A. Lightbody, C. Hill, and F. Sotiropoulos, “ High-resolution numerical simulation of turbulence in natural waterways,” Adv. Water Resour. 34(1), 98113 (2011).
28. I. Afgan, J. McNaughton, S. Rolfo, D. D. Apsley, T. Stallard, and P. Stansby, “ Turbulent flow and loading on a tidal stream turbine by LES and RANS,” Int. J. Heat Fluid Flow 43, 96108 (2013).
29. T. P. Lloyd, S. R. Turnock, and V. F. Humphrey, “ Assessing the influence of inflow turbulence on noise and performance of a tidal turbine using large eddy simulations,” Renewable Energy 71, 742754 (2014).
30. A. S. Bahaj, W. M. J. Batten, and G. McCann, “ Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines,” Renewable Energy 32, 24792490 (2007).
31. A. S. Bahaj, A. F. Molland, J. R. Chaplin, and W. M. J. Batten, “ Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank,” Renewable Energy 32, 407426 (2007).
32. L. Myers and A. S. Bahaj, “ Near wake properties of horizontal axis marine current turbines,” in Proceedings of the 8th European Wave and Tidal Energy Conference (2009), pp. 558565.
33. B. Gaurier, P. Davies, A. Deuff, and G. Germain, “ Flume tank characterization of marine current turbine blade behaviour under current and wave loading,” Renewable Energy 59, 112 (2013).
34. L. P. Chamorro, C. Hill, S. Morton, C. Ellis, R. E. A. Arndt, and F. Sotiropoulos, “ On the interaction between a turbulence open channel flow and an axial-flow turbine,” J. Fluid Mech. 716, 658670 (2013).
35. L. P. Chamorro, D. R. Troolin, S.-J. Lee, R. E. A. Arndt, and F. Sotiropoulos, “ Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine,” Exp. Fluids 54, 1459 (2013).
36. E. Fernandez-Rodriguez, T. J. Stallard, and P. K. Stansby, “ Experimental study of extreme thrust on a tidal stream rotor due to turbulent flow and with opposing waves,” J. Fluids Struct. 51, 354361 (2014).
37. P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, “ Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine,” Renewable Energy 66, 729746 (2014).
38. I. A. Milne, A. H. Day, R. N. Sharma, and R. G. J. Flay, “ Blade loading on tidal turbines for uniform unsteady flow,” Renewable Energy 77, 338350 (2015).
39. T. Stallard, T. Feng, and P. K. Stansby, “ Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow,” J. Fluids Struct. 54, 235246 (2015).
40. P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, “ Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines,” Renewable Energy 68, 876892 (2014).
41. J. Thomson, B. Polagye, V. Durgesh, and M. C. Richmond, “ Measurements of turbulence at two tidal energy sites in Puget Sound, WA,” IEEE J. Oceanic Eng. 37(3), 363374 (2012).
42. K. McCaffrey, B. Fox-Kemper, P. E. Hamlington, and J. Thomson, “ Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis,” Renewable Energy 76, 441453 (2015).
43. I. Langmuir, “ Surface motion of water induced by wind,” Science 87, 119123 (1938).
44. J. C. McWilliams, P. P. Sullivan, and C. H. Moeng, “ Langmuir turbulence in the ocean,” J. Fluid Mech. 334(1), 130 (1997).
45. P. E. Hamlington, L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, “ Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spin-down simulations,” J. Phys. Oceanogr. 44, 22492272 (2014).
46. S. Li, M. Li, G. P. Gerbi, and J.-B. Song, “ Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean,” J. Geophys. Res.: Oceans 118, 51735187 (2013).
47. C.-H. Moeng, “ A large-eddy-simulation model for the study of planetary boundary-layer turbulence,” J. Atmos. Sci. 41(13), 20522062 (1984).<2052:ALESMF>2.0.CO;2
48. L. P. Van Roekel, B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, “ The form and orientation of Langmuir cells for misaligned winds and waves,” J. Geophys. Res.-Oceans 117, C05001 (2012).
49. M. Li, S. Radhakrishnan, U. Piomelli, and W. R. Geyer, “ Large eddy simulation of the tidal cycle variations of an estuarine boundary layer,” J. Geophys. Res. 115, C08003, doi:10.1029/2009JC005702 (2010).
50. J. R. Taylor, S. Sarkar, and V. Armenio, “ Large eddy simulation of stably stratified open channel flow,” Phys. Fluids 17, 116602 (2005).
51. B. Gayen, S. Sarkar, and J. R. Taylor, “ Large eddy simulation of a stratified boundary layer under an oscillatory current,” J. Fluid Mech. 643, 233266 (2010).
52. L. Y. Pao and K. E. Johnson, “ A tutorial on the dynamics and control of wind turbines and wind farms,” in American Control Conference, 2009. ACC'09 (2009), pp. 20762089.
53. J. H. Laks, L. Y. Pao, and A. D. Wright, “ Control of wind turbines: Past, present, and future,” in American Control Conference, 2009. ACC'09 (2009), pp. 20962103.
54. A. S. Bahaj, W. M. J. Batten, A. F. Molland, and J. R. Chaplin, “ Experimental investigation into the hydrodynamic performance of marine current turbines,” Sustainable Energy Series Report No. 3, 2005.
55. L. Myers and A. S. Bahaj, “ Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race,” Renewable Energy 30(11), 17131731 (2005).
56. A. S. Bahaj and L. Myers, “ Analytical estimates of the energy yield potential from the Alderney Race (channel islands) using marine current energy converters,” Renewable Energy 29(12), 19311945 (2004).
57. R. McSherry, J. Grimwade, I. Jones, S. Mathias, A. Wells, and A. Mateus, “ 3D CFD modelling of tidal turbine performance with validation against laboratory experiments,” in Proceedings of the 9th European Wave and Tidal Energy Conference, University of Southampton, UK (2011).
58. A. D. D. Craik and S. Leibovich, “ A rational model for Langmuir circulations,” J. Fluid Mech. 73, 401426 (1976).
59. I. Gjaja and D. D. Holm, “ Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid,” Physica D 98, 343378 (1996).
60. D. D. Holm, “ The ideal Craik-Leibovich equations,” Physica D 98(2–4), 415441 (1996).
61. J. C. McWilliams, J. M. Restrepo, and E. M. Lane, “ An asymptotic theory for the interaction of waves and currents in coastal waters,” J. Fluid Mech. 511, 135178 (2004).
62. N. Suzuki and B. Fox-Kemper, private communication (2015).
63. P. P. Sullivan, J. C. McWilliams, and C.-H. Moeng, “ A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows,” Boundary-Layer Meteorol. 71(3), 247276 (1994).
64. M. A. Donelan, J. Hamilton, and W. H. Hui, “ Directional spectra of wind-generated waves,” Philos. Trans. R. Soc. London Ser. A 315(1534), 509562 (1985).
65. A. Webb and B. Fox-Kemper, “ Wave spectral moments and Stokes drift estimation,” Ocean Modell. 40(3–4), 273288 (2011).
66. B. Polagye and J. Thomson, “ Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, WA (USA),” Proc. IMechE Part A: J. Power Energy 227, 352 (2013).
67. P. P. Sullivan and E. G. Patton, “ The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation,” J. Atmos. Sci. 68(10), 2395 (2011).
68. M. J. Churchfield, Y. Li, and P. J. Moriarty, “ A large-eddy simulation study of wake propagation and power production in an array of tidal current turbines,” NREL, Technical Report No. CP-5000-51765, 2011.
69. J. C. McWilliams and B. Fox-Kemper, “ Oceanic wave-balanced surface fronts and filaments,” J. Fluid Mech. 730, 464490 (2013).
70. A. N. Kolmogorov, “ The local structure of turbulence in incompressible fluid for very large Reynolds number,” Dokl. Akad. Nauk SSSR 30, 299303 (1941).
71.European Commission, Directorate General for Research and European Commission, Directorate General for Research, Energy, New and Renewable Energy Sources, and IT Power (Organization), “SEAFLOW: World's first pilot project for the exploitation of marine currents at a commercial scale: Contact JOR3-CT98-0202: Final Publishable Report,” Office for Official Publications of the European Communities, 2005.
72.OpenHydro, for Fundy Ocean Research Center for Energy, 2015.
73.SeaGen-S 2 MW, MCT Product Brochure, Marine Current Turbines, 2013.

Data & Media loading...


Article metrics loading...



As ocean current turbines move from the design stage into production and installation, a better understanding of localized loading is required in order to more accurately predict turbine performance and durability. In this study, large eddy simulations(LES) of tidal boundary layers without turbines are used to measure the turbulentbending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LESmodel captures turbulence due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism, and bending moments are calculated for an idealized infinitely thin circular rotor disc. Probability density functions of bending moments are calculated and detailed statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point velocity correlations, and velocity structure functions. The simulations show that waves and tidal velocity have the largest impacts on the strength of bending moments, while boundary layer stability and wind speeds have only minimal impacts. It is shown that either transverse velocity structure functions or two-point transverse velocity spatial correlations can be used to predict and understand turbulentbending moments in tidal channels.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd