Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Staff and GSES Firm, Grid-Connected Photovoltaic Systems: Design and Installation ( Global Sustainable Energy Solutions, 2013).
A. Mellit and S. A. Kalogirou, “ Artificial intelligence techniques for photovoltaic applications: A review,” Prog. Energy Combust. Sci. 34, 574632 (2008).
R. H. Inman, H. T. Pedro, and C. F. Coimbra, “ Solar forecasting methods for renewable energy integration,” Prog. Energy Combust. Sci. 39, 535576 (2013).
M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, “ Review of solar irradiance forecasting methods and a proposition for small-scale insular grids,” Renewable Sustainable Energy Rev. 27, 6576 (2013).
A. Mefti, A. Adane, and M. Bouroubi, “ Satellite approach based on cloud cover classification: Estimation of hourly global solar radiation from meteosat images,” Energy Convers. Manage. 49, 652659 (2008).
L. Zarzalejo, L. Ramirez, and J. Polo, “ Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index,” Energy 30, 16851697 (2005).
R. Tapakis and A. Charalambides, “ Equipment and methodologies for cloud detection and classification: A review,” Sol. Energy 95, 392430 (2013).
K. Stefferud, J. Kleissl, and J. Schoene, “ Solar forecasting and variability analyses using sky camera cloud detection and motion vectors,” in 2012 IEEE Power and Energy Society General Meeting (IEEE, 2012), pp. 16.
M. Lipperheide, J. Bosch, and J. Kleissl, “ Embedded now casting method using cloud speed persistence for a photovoltaic power plant,” Sol. Energy 112, 232238 (2015).
R. Marquez and C. F. Coimbra, “ Intra-hour DNI forecasting based on cloud tracking image analysis,” Sol. Energy 91, 327336 (2013).
J. Bosch, Y. Zheng, and J. Kleissl, “ Deriving cloud velocity from an array of solar radiation measurements,” Sol. Energy 87, 196203 (2013).
T. Khatib, A. Mohamed, K. Sopian, and M. Mahmoud, “ Assessment of artificial neural networks for hourly solar radiation prediction,” Int. J. Photoenergy 2012.
T. Khatib, A. Mohamed, M. Mahmoud, and K. Sopian, “ Modeling of daily solar energy on a horizontal surface for five main sites in Malaysia,” Int. J. Green Energy 8, 795819 (2011).
A. Azhari, K. Sopian, A. Zaharim, and M. Ghoul, “ A new approach for predicting solar radiation in tropical environment using satellite images-case study of Malaysia,” WSEAS Trans. Environ. Dev. 4, 373377 (2008).
Z. Dong, D. Yang, T. Reindl, and W. M. Walsh, “ Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics,” Energy Convers. Manage. 79, 6673 (2014).
S. Janjai, I. Masiri, S. Pattarapanitchai, and J. Laksanaboonsong, “ Mapping global solar radiation from long-term satellite data in the tropics using an improved model,” Int. J. Photoenergy 2013.
D. Yang, P. Jirutitijaroen, and W. M. Walsh, “ Hourly solar irradiance time series forecasting using cloud cover index,” Sol. Energy 86, 35313543 (2012).
Z. Dong, D. Yang, T. Reindl, and W. M. Walsh, “ Short-term solar irradiance forecasting using exponential smoothing state space model,” Energy 55, 11041113 (2013).
D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen, and W. M. Walsh, “ Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging,” Renewable Energy 60, 235245 (2013).
D. Yang, V. Sharma, Z. Ye, L. I. Lim, L. Zhao, and A. W. Aryaputera, “ Forecasting of global horizontal irradiance by exponential smoothing, using decompositions,” Energy 81, 111 (2015).
D. Yang, Z. Ye, L. H. I. Lim, and Z. Dong, “ Very short term irradiance forecasting using the lasso,” Sol. Energy 114, 314326 (2015).
D. Yang, Z. Dong, A. Nobre, Y. S. Khoo, P. Jirutitijaroen, and W. M. Walsh, “ Evaluation of transposition and decomposition models for converting global solar irradiance from tilted surface to horizontal in tropical regions,” Sol. Energy 97, 369387 (2013).
D. Yang, Z. Ye, A. M. Nobre, H. Du, W. M. Walsh, L. I. Lim, and T. Reindl, “ Bidirectional irradiance transposition based on the Perez model,” Sol. Energy 110, 768780 (2014).
A. M. A. Rahman et al., “ The performance of three different solar panels for solar electricity applying solar tracking device under the Malaysian climate condition,” Energy Environ. Res. 2, 235 (2012).
T. Reindl, J. Ouyang, A. M. Khaing, K. Ding, Y. S. Khoo, T. M. Walsh, and A. G. Aberle, “ Investigation of the performance of commercial photovoltaic modules under tropical conditions,” Jpn. J. Appl. Phys. 51, 10NF11 (2012).
J. Ye, T. Reindl, and J. Luther, “ Seasonal variation of PV module performance in tropical regions,” in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC) (2012), pp. 002406002410.
T. Khatib, K. Sopian, and H. A. Kazem, “ Actual performance and characteristic of a grid connected photovoltaic power system in the tropics: A short term evaluation,” Energy Convers. Manage. 71, 115119 (2013).
M. Azlan, A. Badrol, M. Roslin, R. Mohd Razwan, A. Mohd Azwan, H. Jasman, and C. Mohd Zamri, “ A preliminary analysis of solar irradiance measurements at TNB Solar Research Centre for optimal orientation of fixed solar panels installed in Selangor Malaysia,” in Proceedings of the 4th International Conference On Energy and Environment (2012).
Y. S. Khoo, A. Nobre, R. Malhotra, D. Yang, R. Ruther, T. Reindl, and A. G. Aberle, “ Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Singapore,” IEEE J. Photovoltaics 4, 647653 (2014).
M. Almaktar, H. Abdul Rahman, M. Y. Hassan, and I. Saeh, “ Artificial neural network-based photovoltaic module temperature estimation for tropical climate of Malaysia and its impact on photovoltaic system energy yield,” Prog. Photovoltaics: Res. Appl. 23, 302 (2013).
M. E. Ya'acob, H. Hizam, M. A. M. Radzi, and M. Kadir, “ Field measurement of PV array temperature for tracking and concentrating 1 k generators installed in Malaysia,” Int. J. Photoenergy 2013, 1.
M. E. Ya'acob, H. Hizam, M. T. Htay, M. A. M. Radzi, T. Khatib et al., “ Calculating electrical and thermal characteristics of multiple PV array configurations installed in the tropics,” Energy Convers. Manage. 75, 418424 (2013).
Z. Ye, A. Nobre, T. Reindl, J. Luther, and C. Reise, “ On PV module temperatures in tropical regions,” Sol. Energy 88, 8087 (2013).
P. Yu, for Plot sunrise and sunset times in MATLAB or Octave (accessed June 15, 2015).
R. Eastman, S. G. Warren, and C. J. Hahn, for Climatic Atlas of Clouds Over Land and Ocean (accessed August 22, 2015).
J. Shi, W.-J. Lee, Y. Liu, Y. Yang, and P. Wang, “ Forecasting power output of photovoltaic systems based on weather classification and support vector machines,” IEEE Trans. Ind. Appl. 48, 10641069 (2012).
F. Wang, Z. Zhen, Z. Mi, H. Sun, S. Su, and G. Yang, “ Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting,” Energy Build. 86, 427438 (2015).
H.-T. Yang, C.-M. Huang, Y.-C. Huang, and Y.-S. Huang, “ A weather-based hybrid method for 1-day ahead hourly forecasting of pv power output,” IEEE Trans. Sustainable Energy 5, 917926 (2014).
A. Yona, T. Senjyu, T. Funabashi, and C.-H. Kim, “ Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction,” IEEE Trans. Sustainable Energy 4, 527533 (2013).
A. Mellit, A. Massi Pavan, and V. Lughi, “ Short-term forecasting of power production in a large-scale photovoltaic plant,” Sol. Energy 105, 401413 (2014).
R. Marquez and C. F. Coimbra, “ Proposed metric for evaluation of solar forecasting models,” J. Sol. Energy Eng. 135, 011016 (2013).
H. T. Pedro and C. F. Coimbra, “ Assessment of forecasting techniques for solar power production with no exogenous inputs,” Sol. Energy 86, 20172028 (2012).
J. G. Silva Fonseca, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, “ Photovoltaic power production forecasts with support vector regression: A study on the forecast horizon,” in 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2011), pp. 002579002583.
J. G. Silva Fonseca, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, “ Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan,” Prog. Photovoltaics: Res. Appl. 20, 874882 (2012).
J. G. Silva Fonseca, T. Oozeki, H. Ohtake, T. Takashima, and K. Ogimoto, “ Regional forecasts of photovoltaic power generation according to different data availability scenarios: A study of four methods,” Prog. Photovoltaics: Res. Appl. 23, 1203 (2014).
J. G. Silva Fonseca, T. Oozeki, H. Ohtake, K.-I. Shimose, T. Takashima, and K. Ogimoto, “ Forecasting regional photovoltaic power generation-a comparison of strategies to obtain one-day-ahead data,” Energy Procedia 57, 13371345 (2014).
R. Xu, H. Chen, and X. Sun, “ Short-term photovoltaic power forecasting with weighted support vector machine,” in 2012 IEEE International Conference on Automation and Logistics (ICAL) (IEEE, 2012), pp. 248253.
M. Bouzerdoum, A. Mellit, and A. Massi Pavan, “ A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant,” Sol. Energy 98, 226235 (2013).
Y.-K. Wu, C.-R. Chen, and H. Abdul Rahman, “ A novel hybrid model for short-term forecasting in PV power generation,” Int. J. Photoenergy 2014.
K. A. Baharin, H. A. Rahman, M. Y. Hassan, and C. K. Gan, “ Hourly irradiance forecasting in Malaysia using support vector machine,” in 2014 IEEE Conference on Energy Conversion (CENCON) (IEEE, 2014), pp. 185190.
T. Fletcher, “ Support vector machines explained,” Tutorial Paper (2009).
C. Cortes and V. Vapnik, “ Support-vector networks,” Mach. Learn. 20, 273 (1995).
A. J. Smola and B. Schölkopf, “ A tutorial on support vector regression,” Stat. Comput. 14, 199222 (2004).
GSES Firm, Grid-Connected PV Systems: Design and Installation/[Global Sustainable Energy Solutions] ( Global Sustainable Energy Solutions [ Botany, NSW], 2011).
C.-C. Chang and C.-J. Lin, “ LIBSVM: A library for support vector machines,” ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011).
C. A. Gueymard, “ A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects,” Renewable Sustainable Energy Rev. 39, 10241034 (2014).
J. Zhang, A. Florita, B.-M. Hodge, S. Lu, H. F. Hamann, V. Banunarayanan, and A. M. Brockway, “ A suite of metrics for assessing the performance of solar power forecasting,” Sol. Energy 111, 157175 (2015).
T. E. Hoff, R. Perez, J. Kleissl, D. Renne, and J. Stein, “ Reporting of irradiance modeling relative prediction errors,” Prog. Photovoltaics: Res. Appl. 21, 15141519 (2013).
F. Mavromatakis, E. Kavoussanaki, F. Vignola, and Y. Franghiadakis, “ Measuring and estimating the temperature of photovoltaic modules,” Sol. Energy 110, 656666 (2014).
M. García, L. Marroyo, E. Lorenzo, J. Marcos, and M. Pérez, “ Solar irradiation and pv module temperature dispersion at a large-scale PV plant,” Prog. Photovoltaics: Res. Appl. 23, 1381 (2014).
T. Khatib, A. Mohamed, K. Sopian, and M. Mahmoud, “ Estimating ambient temperature for Malaysia using generalized regression neural network,” Int. J. Green Energy 9, 195201 (2012).
V. Thapar, G. Agnihotri, and V. Sethi, “ Estimation of hourly temperature at a site and its impact on energy yield of a PV module,” Int. J. Green Energy 9, 553572 (2012).

Data & Media loading...


Article metrics loading...



This paper highlights a new approach using high-quality ground measured data to forecast the hourly power output values for grid-connected photovoltaic (PV) systems located in the tropics. A case study using the 1-year database consisting of PV power output, global irradiance, module temperature, and other relevant variables obtained from Universiti Teknikal Malaysia Melaka is used to develop forecast models for three typical weather conditions—clear, cloudy, and overcast sky conditions. A machine learning method (Support Vector Regression—SVR) and an Artificial Neural Network method (nonlinear autoregressive) are used to produce the models and the results are compared with a benchmark model using the persistence method. Comparison with all the variables suggests that tilted global horizontal irradiance () and module temperature () are the essential input variables to forecast the PV power output. It has also been observed that SVR performs well across all types of sky conditions, with the forecasting skill values between 0.65 and 0.79 when compared to the benchmark persistence method.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd