Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jrse/8/5/10.1063/1.4962873
1.
Barratt, R. S. , “ Meeting lifelong learning needs by distance teaching—Clean technology,” J. Cleaner Prod. 14, 906915 (2006).
http://dx.doi.org/10.1016/j.jclepro.2005.11.050
2.
Bernstein, R. and Madlener, R. , “ Impact of disaggregated ICT capital on electricity intensity in European manufacturing,” Appl. Econ. Lett. 17, 16911695 (2010).
http://dx.doi.org/10.1080/13504850903120717
3.
Cho, Y. , Lee, J. , and Kim, T.-Y. , “ The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach,” Energy Policy 35, 47304738 (2007).
http://dx.doi.org/10.1016/j.enpol.2007.03.030
4.
Collard, F. , Fève, P. , and Portier, F. , “ Electricity consumption and ICT in the French service sector,” Energy Econ. 27, 541550 (2005).
http://dx.doi.org/10.1016/j.eneco.2004.12.002
5.
Coroama, V. C. and Hilty, L. M. , “ Assessing Internet energy intensity: A review of methods and results,” Environ. Impact Assess. Rev. 45, 6368 (2014).
http://dx.doi.org/10.1016/j.eiar.2013.12.004
6.
Darrat, A. F. and Al-Sowaidi, S. S. , “ Information technology, financial deepening and economic growth: Some evidence from a fast growing emerging economy,” J. Econ. Int. Finance 2, 2835 (2010).
7.
Dickey, D. A. and Fuller, W. A. , “ Distribution of the estimators for autoregressive time series with a unit root,” J. Am. Stat. Assoc. 74, 427431 (1979).
http://dx.doi.org/10.1080/01621459.1979.10482531
8.
Dickey, D. A. and Fuller, W. A. , “ Likelihood ratio statistics for autoregressive time series with a unit root,” Econometrica 49, 10571072 (1981).
http://dx.doi.org/10.2307/1912517
9.
Driscoll, J. C. and Kraay, A. C. , “ Consistent covariance matrix estimation with spatially dependent panel data,” Rev. Econ. Stat. 80, 549560 (1998).
http://dx.doi.org/10.1162/003465398557825
10.
Erdmann, L. and Hilty, L. M. , “ Scenario analysis: Exploring the macroeconomic impacts of information and communication technologies on greenhouse gas emissions,” J. Ind. Ecol. 14, 826843 (2010).
http://dx.doi.org/10.1111/j.1530-9290.2010.00277.x
11.
Global e-Sustainability Initiative, SMART 2020: Enabling the Low Carbon Economy in the Information Age (Creative Commons, 2008).
12.
Granger, C. W. J. , “ Investigating causal relations by econometric models and cross-spectral methods,” Econometrica 37, 424438 (1969).
http://dx.doi.org/10.2307/1912791
13.
Greene, W. H. , Econometric Analysis ( Prentice Hall, Upper Saddle River, NJ, 2000).
14.
Grossman, G. M. , Pollution and Growth: What Do We Know? The Economics of Sustainable Development ( Cambridge University Press, 1995).
15.
Hilty, L. M. , Arnfalk, P. , Erdmann, L. , Goodman, J. , Lehmann, M. , and Wäger, P. A. , “ The relevance of information and communication technologies for environmental sustainability—A prospective simulation study,” Environ. Modell. Software 21, 16181629 (2006).
http://dx.doi.org/10.1016/j.envsoft.2006.05.007
16.
Hoechle, D. , “ Robust standard errors for panel regressions with cross-sectional dependence,” Stata J. 7, 281312 (2007).
17.
Im, K. S. , Pesaran, M. H. , and Shin, Y. , “ Testing for unit roots in heterogeneous panels,” J. Econ. 115, 5374 (2003).
http://dx.doi.org/10.1016/S0304-4076(03)00092-7
18.
International Energy Agency, Gadgets and Gigawatts: Policies for Energy Efficient Electronics ( OECD/IEA, Paris, 2009).
19.
Ishida, H. , “ The effect of ICT development on economic growth and energy consumption in Japan,” Telematics Inf. 32, 7988 (2015).
http://dx.doi.org/10.1016/j.tele.2014.04.003
20.
Lin, B. and Zhao, H. , “ Energy efficiency and conservation in China's chemical fiber industry,” J. Cleaner Prod. 103, 345352 (2015).
http://dx.doi.org/10.1016/j.jclepro.2014.06.070
21.
Masanet, E. and Matthews, H. S. , “ Exploring environmental applications and benefits of information and communication technology,” J. Ind. Ecol. 14, 687691 (2010).
http://dx.doi.org/10.1111/j.1530-9290.2010.00285.x
22.
OECD, Greener and smarter: ICTs, the environment and climate change, in OECD Information Technology Outlook 2010 (OECD, Paris, 2010).
23.
Owen, P. , The Ampere Strikes Back: How Consumer Electronics are Taking Over the World ( Energy Saving Trust, London, 2007).
24.
Pedroni, P. , “ Critical values for cointegration tests in heterogeneous panels with multiple regressors,” Oxford Bull. Econ. Stat. 61, 653670 (1999).
http://dx.doi.org/10.1111/1468-0084.61.s1.14
25.
Pedroni, P. , “ Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis,” Econ. Theory 20, 597625 (2004).
26.
Pesaran, M. H. , “ General diagnostic tests for cross section dependence in panels,” in CESifo (2004), Paper No. 1229.
27.
Roth, K. W. , Goldstein, F. , and Kleinman, J. , Energy Consumption by Commercial Office and Telecommunication Equipment (ECEEE, Stockholm, 2002).
28.
Saidi, K. , Toumi, H. , and Zaidi, S. , “ Impact of information communication technology and economic growth on the electricity consumption: Empirical evidence from 67 countries,” J. Knowl. Econ. (published online).
http://dx.doi.org/10.1007/s13132-015-0276-1
29.
Sadorsky, P. , “ Information communication technology and electricity consumption in emerging economies,” Energy Policy 48, 130136 (2012).
http://dx.doi.org/10.1016/j.enpol.2012.04.064
30.
Salahuddin, M. and Alam, K. , “ Internet usage, electricity consumption and economic growth in Australia: A time series evidence,” Telematics Inf. 32, 862878 (2015).
http://dx.doi.org/10.1016/j.tele.2015.04.011
31.
Schulte, P. , Welsch, H. , and Rexhäuser, S. , “ ICT and the demand for energy: Evidence from OECD countries,” Environ. Resour. Econ. 63, 119146 (2014).
http://dx.doi.org/10.1007/s10640-014-9844-2
32.
Sioshansi, F. P. and Davis, E. H. , “ Information technology and efficient pricing: Providing a competitive edge for electric utilities,” Energy Policy 17, 599607 (1989).
http://dx.doi.org/10.1016/0301-4215(89)90139-0
33.
State Information Centre of China, Information Society Development Report of China 2015 (E-Government, 2015) (in Chinese).
34.
Takase, K. and Murota, Y. , “ The impact of IT investment on energy: Japan and US comparison in 2010,” Energy Policy 32, 12911301 (2004).
http://dx.doi.org/10.1016/S0301-4215(03)00097-1
35.
Thirring, H. and Miner, T. D. , “ Energy for man: From windmills to nuclear power,” Am. J. Phys. 31, 311 (1963).
http://dx.doi.org/10.1119/1.1969489
36.
Toffel, M. W. and Horvath, A. , “ Environmental implications of wireless technologies: News delivery and business meetings,” Environ. Sci. Technol. 38, 29612970 (2004).
http://dx.doi.org/10.1021/es035035o
37.
Walker, W. , “ Information technology and the use of energy,” Energy Policy 13, 458476 (1985).
http://dx.doi.org/10.1016/0301-4215(85)90102-8
38.
Walker, W. , “ Information technology and energy supply,” Energy Policy 14, 466488 (1986).
http://dx.doi.org/10.1016/0301-4215(86)90001-7
39.
Wooldridge, J. M. , Econometric Analysis of Cross Section and Panel Data ( The MIT Press, Cambridge, MA, 2002).
40.
Wu, H. , “ Green ICT impact on energy conservation and emission reduction,” China Commun. 5, 7984 (2008).
41.
Yang, Y. , Cai, W. , and Wang, C. , “ Industrial CO2 intensity, indigenous innovation and R&D spillovers in China's provinces,” Appl. Energy 131, 117127 (2014).
http://dx.doi.org/10.1016/j.apenergy.2014.06.033
42.
Yu, H. , “ The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007,” Energy Policy 45, 583593 (2012).
http://dx.doi.org/10.1016/j.enpol.2012.03.009
43.
Zhang, C. and Liu, C. , “ The impact of ICT industry on CO2 emissions: A regional analysis in China,” Renewable Sustainable Energy Rev. 44, 1219 (2015).
http://dx.doi.org/10.1016/j.rser.2014.12.011
http://aip.metastore.ingenta.com/content/aip/journal/jrse/8/5/10.1063/1.4962873
Loading
/content/aip/journal/jrse/8/5/10.1063/1.4962873
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jrse/8/5/10.1063/1.4962873
2016-09-16
2016-09-29

Abstract

There are few empirical studies concerning the impact of information communication technology (ICT) on energy intensity in developing countries. We introduce an expanded STIRPAT model and China's provincial data samples during 2003–2012 to fill this gap. This paper applies the Driscoll–Kraay econometric method to assess the long-term impact of ICT investment on energy intensity and employs a panel error correction model to explore the short-term influence. The results indicate that the ICT investment significantly reduces energy intensity in the long-run, while it does not in the short-run at a nationwide level. Concerning the regional diversities of China, the impact of the ICT investment on energy intensity is significantly negative in western and central regions, while is insignificant in the eastern sample. Furthermore, the negative impact grows as the ICT investment increases in central provinces. Additionally, the short-term energy intensity reduction effect exists only in eastern regions, while it does not in central provinces. The ICT investment increases the energy intensity in the short-run in the western sample.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jrse/8/5/1.4962873.html;jsessionid=gmyEpr0WnkR7orzi_kKSwjww.x-aip-live-02?itemId=/content/aip/journal/jrse/8/5/10.1063/1.4962873&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jrse
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jrse.aip.org/8/5/10.1063/1.4962873&pageURL=http://scitation.aip.org/content/aip/journal/jrse/8/5/10.1063/1.4962873'
Right1,Right2,Right3,