1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Ideal and distorted vortex lattice in bulk and film superconductors (Review)
Rent:
Rent this article for
USD
10.1063/1.3293696
/content/aip/journal/ltp/36/1/10.1063/1.3293696
http://aip.metastore.ingenta.com/content/aip/journal/ltp/36/1/10.1063/1.3293696
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Order parameter , for the ideal vortex lattice (dashed line) and for a vortex lattice with a vacancy Eq. (15), with a simple relaxation field Eq. (19) (dotted line), and with a better relaxation field that minimizes the defect energy (solid line, see text).

Image of FIG. 2.
FIG. 2.

Contour lines of the order parameter Eq. (15) of a vortex lattice with one vacancy at and complete relaxation (see solid line in Fig. 1). The vortex displacements are indicated by short bold lines between dots.

Image of FIG. 3.
FIG. 3.

The magnetization curves for a triangular vortex lattice (solid lines, numerical result), which are identical to within the line thickness with those for a square lattice. Shown are versus (upper left triangle) and versus (lower right triangle). The dots show the fit, Eq. (59), good for .

Image of FIG. 4.
FIG. 4.

The magnetic field and order parameter of an isolated vortex line calculated from the Ginzburg–Landau theory for GL parameters , 5, and 20. For such large the field in the vortex center is twice the applied equilibrium field, .

Image of FIG. 5.
FIG. 5.

Two profiles of the magnetic field and order parameter along the axis (nearest neighbor direction) for triangular vortex lattices with lattice spacings (, bold lines) and (, thin lines). The dashed line shows the magnetic field of an isolated flux line from Fig. 4—the Ginzburg–Landau theory for .

Image of FIG. 6.
FIG. 6.

Contour lines of and for , .

Image of FIG. 7.
FIG. 7.

The magnetic field variance of a triangular FLL for plotted in units of as (solid lines) such that the curves for all merge near . The dashed lines show the same functions divided by such that they go to a finite constant 0.172 at . All curves are plotted versus to stretch them at small values and show that they go to zero linearly. The limit for very small is shown as two dot-dash straight lines for and . The top edge 0.383 shows the usual London approximation.

Image of FIG. 8.
FIG. 8.

The shear modulus of a triangular lattice in bulk superconductors as a function of the reduced induction for GL parameters , 0.5, 0.6, 0.7, 0.707, 0.75, 1, 1.4, 2, 3, 5, 7, 10, 100 in units of . For the shear modulus is formally negative, , though vortices and a vortex lattice are energetically not favorable in bulk type-I superconductors.

Image of FIG. 9.
FIG. 9.

Magnetic field lines for a superconductor film calculated from the Ginzburg–Landau theory for a triangular vortex lattice. Shown is the example , , triangular lattice with vortex spacing (unit length) , film thickness . The left-hand side shows the field lines that would apply if the field inside the film would not change near the surfaces marked by the dashed lines. The right-hand side shows the correct solution. The density of the depicted field lines is proportional to .

Image of FIG. 10.
FIG. 10.

Profiles of the order parameter and magnetic field for the case of Fig. 9, film thickness . The solid lines show and at the center of the film and the dashed lines at the film surfaces. The dotted line indicates the average induction equal to the applied field .

Image of FIG. 11.
FIG. 11.

The shear modulus of a triangular vortex lattice in films with thickness , 0.32, 0.56, 1, 1.8, 3.2, 5.6, 10, and 32 plotted versus for . This is positive, i.e. the triangular vortex lattice is stable, for sufficiently thin films or for low inductions. For the bulk for the same is reached (dot-dash line), and for the bulk in the limit is reached (dashed line).

Image of FIG. 12.
FIG. 12.

The magnetization of infinite films of thickness , 1, 3, 10, with a triangular vortex lattice generated by a perpendicular magnetic field . The plots show versus for , 0.707, 1, 1.5.

Loading

Article metrics loading...

/content/aip/journal/ltp/36/1/10.1063/1.3293696
2010-03-02
2014-04-25
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ideal and distorted vortex lattice in bulk and film superconductors (Review)
http://aip.metastore.ingenta.com/content/aip/journal/ltp/36/1/10.1063/1.3293696
10.1063/1.3293696
SEARCH_EXPAND_ITEM