1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Two-dimensional semimetal in HgTe-based quantum wells
Rent:
Rent this article for
USD
10.1063/1.3573648
/content/aip/journal/ltp/37/3/10.1063/1.3573648
http://aip.metastore.ingenta.com/content/aip/journal/ltp/37/3/10.1063/1.3573648
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Schematic cross section of a structure with an undoped HgTe quantum well grown by molecular-beam epitaxy.

Image of FIG. 2.
FIG. 2.

A transistor Hall structure with a field gate. The top figure is a schematic vertical cross section and the bottom, a view from above.

Image of FIG. 3.
FIG. 3.

The Hall component of the resistance, for a (013) HgTe quantum well with a thickness of for different values of the gate voltage (a); energy spectra of two-dimensional electron systems in an HgTe well: 2D semimetal, 2D electron gas (2DEG), and 2D hole gas (2DHG) (b).

Image of FIG. 4.
FIG. 4.

The concentrations of electrons and holes as functions of gate voltage for a -thick (013) HgTe quantum well.

Image of FIG. 5.
FIG. 5.

for (a), the Hall component of the resistivity for a -thick (112) HgTe quantum well for different gate voltages (b), and the electron and hole concentrations as functions of gate voltage for the same wells (c)

Image of FIG. 6.
FIG. 6.

Calculated dispersion relation for a -thick (112) HgTe quantum well, neglecting the mismatch of the lattice constants of HgTe and CdTe (a). For lattice constants of HgTe equal to and CdTe, (b), the smooth curves and the dashed curves .

Image of FIG. 7.
FIG. 7.

The mobilities of two-dimensional electrons and holes as functions of gate voltage for a two-dimensional semimetal in a -thick (013) HgTe quantum well at .

Image of FIG. 8.
FIG. 8.

curves for and different temperatures in the range (the temperature increases from the bottom to the top curve) (a); for , , and (b). The curves are calculated using Eq. (1); the solid symbols are experimental data. The inset shows the fitting parameter as a function of gate voltage: the curves are calculated using Eqs. (2) and (3) and the points are experimental data.

Image of FIG. 9.
FIG. 9.

Diagonal and Hall components of the resistivity tensor as a function of gate voltage for a fixed magnetic field of . The Hall component of the resistivity tensor is indicated for two signs of the magnetic field. Inset: a Landau level diagram for the electron and hole subbands. The last Landau levels from the electron and hole subbands intersect at . is the Fermi level at the charge neutrality point (a). The diagonal and Hall conductivities as functions of gate voltage for the fixed magnetic field and . The arrow indicates the position of the charge neutrality point, where (b).

Image of FIG. 10.
FIG. 10.

Diagonal and Hall conductivities as functions of gate voltage for a fixed magnetic field and different temperatures : 850, 250, and 90 (a). The diagonal and Hall conductivities as functions of gate voltage for different magnetic fields : 1.5, 2, and 2.5 and . The vertical line indicates the position of the charge neutrality point. (b)

Image of FIG. 11.
FIG. 11.

Magnetoresistance at the charge neutrality point for different temperatures. Inset: resistance as a function of 1/T for fixed values of the magnetic field , from bottom to top: 4, 6, and 7. The straight line in the inset is an Arrhenius dependence with (a). Magnetoresistance at the charge neutrality point for temperatures of 90 and . The smooth curves are fits to . The dashed curve is a fit obtained using percolation theory for spiral states in the case of a random quasiclassical magnetic field13 (b).

Image of FIG. 12.
FIG. 12.

Schematic illustration of electron-hole spiral states propagating along contours at the charge neutrality point in a strong magnetic field and of the geometry of a saddle point between neighboring percolation clusters.

Loading

Article metrics loading...

/content/aip/journal/ltp/37/3/10.1063/1.3573648
2011-04-15
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-dimensional semimetal in HgTe-based quantum wells
http://aip.metastore.ingenta.com/content/aip/journal/ltp/37/3/10.1063/1.3573648
10.1063/1.3573648
SEARCH_EXPAND_ITEM