Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/ltp/42/2/10.1063/1.4941005
1.
1. G. A. D. Ritchie and D. S. Sivia, Foundations of Physics for Chemists ( Oxford University Press, 2000).
2.
2. L. J. Collins-Mclntyre, S. E. Harrison, P. Schönherr, N. Steinke, C. J. Kinane, T. R. Charlton, D. Alba-Veneroa, A. Pushp, A. J. Kellock, S. S. P. Parkin, J. S. Harris, S. Langridge, G. van der Laan, and T. Hesjedal, Europhys. Lett. 107, 57009 (2014).
http://dx.doi.org/10.1209/0295-5075/107/57009
3.
3. J. Reguera, E. Ponomarev, T. Geue, F. Stellacci, F. Bresme, and M. Moglicnetti, Nanoscale 7, 5665 (2015).
http://dx.doi.org/10.1039/C5NR00620A
4.
4. R. Budvytyte, M. Mickevicius, D. J. Vanderah, F. Heinrich, and G. Valincius, Langmuir 29, 4320 (2013).
http://dx.doi.org/10.1021/la304613a
5.
5. T. A. Kitchens, T. Oversluizen, L. Passell, and R. I. Schermer, Phys. Rev. Lett. 32, 791 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.791
6.
6. T. R. Charlton, R. M. Dalgliesh, O. Kirichek, S. Langridge, A. Ganshin, and P. V. E. McClintock, Fiz. Nizk. Temp. 34, 400 (2008)
6. T. R. Charlton, R. M. Dalgliesh, O. Kirichek, S. Langridge, A. Ganshin, and P. V. E. McClintock, [Low Temp. Phys. 34, 316 (2008)].
http://dx.doi.org/10.1063/1.2908893
7.
7. A. F. Andreev, Zh. Exp. Teor. Fiz. 50, 1415 (1966).
8.
8. T. R. Charlton, R. M. Dalgliesh, A. Ganshin, O. Kirichek, S. Langridge, and P. V. E. McClintock, J. Phys.: Conf. Ser. 150, 032022 (2009).
http://dx.doi.org/10.1088/1742-6596/150/3/032022
9.
9. O. Kirichek, N. D. Vasilev, T. R. Charlton, C. J. Kinane, R. M. Dalgliesh, A. Ganshin, S. Langridge, and P. V. E. McClintock, J. Phys.: Conf. Ser. 400, 012033 (2012).
http://dx.doi.org/10.1088/1742-6596/400/1/012033
10.
10. H. M. Guo, D. O. Edwards, R. E. Sarwinski, and J. T. Tough, Phys. Rev. Lett. 27, 1259 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.1259
11.
11. D. O. Edwards and W. F. Saam, Progress in Low Temperature Physics VII A, edited by D. F. Brewer ( North Holland, Amsterdam, 1978), p. 283.
12.
12. B. N. Esel'son, A. S. Rybalko, and S. S. Sokolov, Fiz. Nizk. Temp. 6, 1120 (1980)
12. B. N. Esel'son, A. S. Rybalko, and S. S. Sokolov, [Sov. J. Low Temp. Phys. 6, 544 (1980)].
13.
13. H. Yayama and Y. Yatsuyama, J. Low Temp. Phys. 175, 401 (2014).
http://dx.doi.org/10.1007/s10909-013-0956-9
14.
14. S. S. Sokolov, J.-P. Rino, and N. Studart, Phys. Rev. B 55, 14473 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.14473
15.
15. O. Kirichek, M. Saitoh, K. Kono, and F. I. B. Williams, Phys. Rev. Lett. 86, 4064 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4064
16.
16. H. N. Robkoff, D. A. Ewen, and R. B. Hallock, Phys. Rev. Lett. 43, 2006 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.2006
17.
17. R. Felici, J. Penfold, R. C. Ward, and W. G. Williams, Appl. Phys. A: Solids Surf. 45, 169 (1988).
http://dx.doi.org/10.1007/BF02565206
19.
19. L. G. Parratt, Phys. Rev. 95, 359 (1954).
http://dx.doi.org/10.1103/PhysRev.95.359
20.
20. S. J. Blundell and J. A. C. Bland, Phys. Rev. B 46, 3391 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.3391
21.
21. R. J. Scott and P. V. E. McClintock, Phys. Lett. A 64, 205 (1977).
http://dx.doi.org/10.1016/0375-9601(77)90717-4
22.
22. B. N. Esel'son, V. N. Grigor'ev, V. G. Ivantsov, E. Ya. Rudavskii, D. G. Sanikidze, and I. A. Serbin, Solutions of the Quantum Liquids 3He-4He ( Nauka, Moscow, 1973) (in Russian).
23.
23. M. Björck and G. Andersson, J. Appl. Cryst. 40, 1174 (2007).
http://dx.doi.org/10.1107/S0021889807045086
24.
24. R. Pynn, SPIE: Neutron Opt. Devices Appl. 1738, 270 (1992).
http://dx.doi.org/10.1117/12.130638
http://aip.metastore.ingenta.com/content/aip/journal/ltp/42/2/10.1063/1.4941005
Loading
/content/aip/journal/ltp/42/2/10.1063/1.4941005
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/ltp/42/2/10.1063/1.4941005
2016-02-01
2016-09-27

Abstract

Neutron reflectometry offers a unique opportunity for the direct observation of nanostratification in 3He-4He mixtures in the ultra-low temperature limit. Unfortunately the results of recent experiments could not be well-modelled on account of a seemingly anomalous variation of reflectivity with momentum transfer. We now hypothesize that this effect is attributable to an optical distortion caused by the liquid'smeniscus near the container wall. The validity of this idea is tested and confirmed through a subsidiary experiment on a DO sample, showing that the meniscus can significantly distort results if the beam size in the horizontal plane is comparable with, or bigger than, the diameter of the container. The meniscus problem can be eliminated if the beam size is substantially smaller than the diameter of the container, such that reflection takes place only from the flat region of the liquid surface thus excluding the meniscus tails. Practical measures for minimizing the meniscus distortion effect are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/ltp/42/2/1.4941005.html;jsessionid=oRLrSV8Tvbn8UoIPXcJZAzPF.x-aip-live-03?itemId=/content/aip/journal/ltp/42/2/10.1063/1.4941005&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/ltp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=ltp.aip.org/42/2/10.1063/1.4941005&pageURL=http://scitation.aip.org/content/aip/journal/ltp/42/2/10.1063/1.4941005'
Right1,Right2,Right3,