No data available.

Please log in to see this content.

You have no subscription access to this content.

No metrics data to plot.

The attempt to load metrics for this article has failed.

The attempt to plot a graph for these metrics has failed.

The full text of this article is not currently available.

f

Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma

H. Takabe

^{1}, K. Mima^{1}, L. Montierth^{2}and R. L. Morse^{2}
View Affiliations
Hide Affiliations

Access full text
Article

### Abstract

The linear stability of an ablating plasma is investigated as an eigenvalue problem by assuming the plasma to be at the stationary state. For various structures of the ablating plasma, the growth rate is found to be expressed well in the form γ=α(*k* *g*)^{1/2} −β*k* *V* _{ a }, where α=0.9, β≂3–4, and *V* _{ a } is the flow velocity across the ablation front, and is found to agree well with recent two‐dimensional simulations in a classical transport regime. Short‐wavelength lasers inducing enhanced mass ablation are suggested to be advantageous to stable implosion because of the ablative stabilization.

© 1985 American Institute of Physics

Received 30 April 1984
Accepted 03 September 1985

/content/aip/journal/pof1/28/12/10.1063/1.865099

1.

1.G. W. Fraley, W. P. Gula, D. B. Henderson, R. L. McCrory, R. C. Malone, R. J. Mason, and R. L. Morse, in Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1974), Vol. II, p. 543.

2.

2.R. L. McCrory, L. Montierth, R. L. Morse, and C. P. Verdon, Phys. Rev. Lett. 46, 336 (1981).

3.

3.C. P. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. I. Meiron, and S. A. Orszag, Phys. Fluids 25, 1653 (1982).

4.

4.R. L. McCrory, L. Montierth, R. L. Morse, and C. P. Verdon, in Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981), Vol. 5, pp. 713–742.

5.

5.H. Takabe, L. Montierth, and R. L. Morse, Phys. Fluids 26, 2299 (1983).

6.

6.M. H. Emery, J. H. Gardner, and J. P. Boris, Appl. Phys. Lett. 41, 808 (1982);

6.also see M. H. Emery, J. H. Gardner, and J. P. Boris, submitted to Appl. Phys. Lett. errata.

7.

7.M. H. Emery, J. H. Gardner, and J. P. Boris, Phys. Fluids 27, 1338 (1984).

8.

8.L. Baker, Phys. Fluids 26, 627 (1983).

9.

9.D. G. Colombant and W. M. Manheimer, Phys. Fluids 26, 3127 (1983).

10.

10.W. M. Manheimer and D. G. Colombant, Phys. Fluids 27, 983 (1984).

11.

11.D. L. Book and I. B. Bernstein, J. Plasma Phys. 23, 521 (1980).

12.

12.J. L. Bobin, Phys. Fluids 14, 2341 (1971).

13.

13.H. Takabe, K. Nishihara, and T. Taniuti, J. Phys. Soc. Jpn. 45, 2001 (1978).

14.

14.W. L. Manheimer, D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).

15.

15.In the moving frame in spherical geometry, additional terms stemming from the dependence of divergence on the radius should be included in Eqs. (4) and (5). That is, when we transfer the coordinate as where is the velocity of the frame and in the present model, the divergence of a variable f is Strictly speaking, therefore, the stationary state does not exist in spherical geometry for However, under the condition that where is typical scale length of the plasma, the neglect of the additional terms can be assumed. In fact, the condition is satisfied since the nonlinear electron heat flow makes the plasma accompany the steep density, velocity, and temperature gradients.

16.

16.S. J. Gitomer, R. L. Morse, and B. S. Newberger, Phys. Fluids 20, 234 (1977);

16.L. Montierth and R. L. Morse, submitted to Phys. Fluids.

17.

17.I. B. Bernstein and D. L. Book, Phys. Fluids, 26, 453 (1983).

18.

18.S. Bodner, Phys. Rev. Lett. 33, 761 (1974).

19.

19.W. M. Manheimer and D. G. Colombant, Phys. Fluids 27, 1927 (1984).

20.

20.S. Bodner, M. Emery, J. Gardner, J. Grun, M. Herbst, S. Kacenjar, R. Lehmberg, C. Manka, E. McLean, S. Obenschain, B. Ripin, A. Schmitt, J. Stamper, and F. Yang, in Plasma Physics and Controlled Nuclear Fusion Research, 10th International Conference London, 1984 (IAEA, Vienna, 1985), Vol. 3, p. 155.

21.

21.B. Ahlborn, M. H. Key, and A. R. Bell, Phys. Fluids 25, 541 (1982).

22.

22.S. Skupsky, R. L. McCrory, R. S. Craxton, J. Delettrez, R. Epstein, K. Lee, and C. Verdon (private communication).

23.

23.M. H. Emery, J. H. Orens, J. H. Gardner, and J. P. Boris, Phys. Rev. Lett. 48, 253 (1982).

http://aip.metastore.ingenta.com/content/aip/journal/pof1/28/12/10.1063/1.865099

Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma

/content/aip/journal/pof1/28/12/10.1063/1.865099

/content/aip/journal/pof1/28/12/10.1063/1.865099

Data & Media loading...

Article metrics loading...

/content/aip/journal/pof1/28/12/10.1063/1.865099

1985-12-01

2016-02-08

10.1063/1.865099

/content/aip/journal/pof1/28/12/10.1063/1.865099

dcterms_title,dcterms_subject,pub_keyword

-contentType:Contributor -contentType:Concept -contentType:Institution

6

3

Full text loading...

Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma

/content/aip/journal/pof1/28/12/10.1063/1.865099

true

Commenting has been disabled for this content