1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Small particles in homogeneous turbulence: Settling velocity enhancement by two-way coupling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/18/2/10.1063/1.2166456
1.
1.K. D. Squires and J. K. Eaton, “Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence,” J. Fluid Mech.0022-1120 226, 1 (1991).
2.
2.S. Elghobashi and G. C. Truesdell, “Direct simulation of particle dispersion in a decaying isotropic turbulence,” J. Fluid Mech.0022-1120 242, 655 (1992).
3.
3.J. K. Eaton and J. R. Fessler, “Preferential concentration of particles by turbulence,” Int. J. Multiphase Flow0301-9322 20, 169 (1994).
http://dx.doi.org/10.1016/0301-9322(94)90072-8
4.
4.C. T. Crowe, T. R. Troutt, and J. N. Chung, “Numerical models for two-phase turbulent flows,” Annu. Rev. Fluid Mech.0066-4189 28, 11 (1983).
http://dx.doi.org/10.1146/annurev.fluid.28.1.11
5.
5.F. Wen, N. Kamaly, J. N. Chung, C. T. Crowe, and T. R. Troutt, “Particle dispersion by vortex structures in plane mixing layers,” J. Fluids Eng.0098-2202 114, 657 (1992).
6.
6.L. Tang, F. Wen, Y. Yang, C. T. Crowe, J. N. Chung, and T. R. Troutt, “Self-organizing particle dispersion mechanism in a plane wake,” Phys. Fluids A0899-8213 4, 2244 (1992).
http://dx.doi.org/10.1063/1.858465
7.
7.K. D. Squires and J. K. Eaton, “Preferential concentration of particles by turbulence,” Phys. Fluids A0899-8213 3, 1169 (1991).
http://dx.doi.org/10.1063/1.858045
8.
8.K. D. Squires and J. K. Eaton, “Particle response and turbulence modification in isotropic turbulence,” Phys. Fluids A0899-8213 2, 1191 (1990).
http://dx.doi.org/10.1063/1.857620
9.
9.S. Elghobashi and G. C. Truesdell, “On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification,” Phys. Fluids A0899-8213 5, 1790 (1993).
http://dx.doi.org/10.1063/1.858854
10.
10.G. C. Truesdell and S. Elghobashi, “On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion,” Phys. Fluids1070-6631 6, 1405 (1994).
http://dx.doi.org/10.1063/1.868254
11.
11.M. Boivin, O. Simonin, and K. D. Squires, “Direct numerical simulation of turbulence modulation by particles in isotropic turbulence,” J. Fluid Mech.0022-1120 375, 235 (1998).
http://dx.doi.org/10.1017/S0022112098002821
12.
12.O. A. Druzhinin, “The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles,” Phys. Fluids1070-6631 13, 3738 (2001).
http://dx.doi.org/10.1063/1.1415735
13.
13.A. Ferrante and S. Elghobashi, “On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence,” Phys. Fluids1070-6631 15, 315 (2003).
http://dx.doi.org/10.1063/1.1532731
14.
14.M. R. Maxey, “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech.0022-1120 174, 441 (1987).
15.
15.L.-P. Wang and M. R. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech.0022-1120 256, 27 (1993).
16.
16.R. Mei, “Effect of turbulence on the particle settling velocity in the nonlinear drag range,” Int. J. Multiphase Flow0301-9322 20, 273 (1994).
http://dx.doi.org/10.1016/0301-9322(94)90082-5
17.
17.C. Y. Yang and U. Lei, “The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech.0022-1120 371, 179 (1998).
http://dx.doi.org/10.1017/S0022112098002328
18.
18.A. Aliseda, A. Cartellier, F. Hainaux, and J. C. Lasheras, “Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech.0022-1120 468, 77 (2002).
http://dx.doi.org/10.1017/S0022112002001593
19.
19.T. S. Yang and S. S. Shy, “The settling velocity of heavy particles in an aqueous near-isotropic turbulence,” Phys. Fluids1070-6631 15, 868 (2003).
http://dx.doi.org/10.1063/1.1557526
20.
20.T. S. Yang and S. S. Shy, “Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements,” J. Fluid Mech.0022-1120 526, 171 (2005).
21.
21.V. Eswaran and S. B. Pope, “An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids0045-7930 16, 257 (1988).
http://dx.doi.org/10.1016/0045-7930(88)90013-8
22.
22.T. Bosse, C. Härtel, E. Meiburg, and L. Kleiser, “Numerical simulation of finite Reynolds number suspension drops settling under gravity,” Phys. Fluids1070-6631 17, 037101 (2005).
http://dx.doi.org/10.1063/1.1851428
23.
23.M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids0031-9171 26, 883 (1983).
http://dx.doi.org/10.1063/1.864230
24.
24.S. A. Orszag, “Numerical simulation of incompressible flows within simple boundaries: I. Galerkin (spectral) representations,” Stud. Appl. Math.0022-2526 50, 293 (1971).
25.
25.S. Elghobashi, “On predicting particle-laden turbulent flows,” Appl. Sci. Res.0003-6994 52, 309 (1994).
http://dx.doi.org/10.1007/BF00936835
26.
26.M. R. Maxey and B. K. Patel, “Localized force representations for particles sedimenting in Stokes flow,” Int. J. Multiphase Flow0301-9322 27, 1603 (2001).
http://dx.doi.org/10.1016/S0301-9322(01)00014-3
27.
27.H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972).
28.
28.S. Schreck and S. J. Kleis, “Modification of grid-generated turbulence by solid particles,” J. Fluid Mech.0022-1120 249, 665 (1993).
29.
29.J. D. Kulick, J. R. Fessler, and J. K. Eaton, “Particle response and turbulence modification in fully developed channel flow,” J. Fluid Mech.0022-1120 277, 109 (1994).
30.
30.A. Ferrante and S. Elghobashi, “On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles,” J. Fluid Mech.0022-1120 503, 345 (2004).
http://dx.doi.org/10.1017/S0022112004007943
31.
31.S. Sundaram and L. R. Collins, “A numerical study of the modulation of isotropic turbulence by suspended particles,” J. Fluid Mech.0022-1120 379, 105 (1999).
http://dx.doi.org/10.1017/S0022112098003073
32.
32.S. Balachandar and M. R. Maxey, “Methods for evaluating fluid velocities in spectral simulations of turbulence,” J. Comput. Phys.0021-9991 83, 96 (1989).
http://dx.doi.org/10.1016/0021-9991(89)90224-6
33.
33.P. K. Yeung and S. B. Pope, “An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence,” J. Comput. Phys.0021-9991 79, 373 (1988).
http://dx.doi.org/10.1016/0021-9991(88)90022-8
34.
34.S. Sundaram and L. R. Collins, “Numerical considerations in simulating a turbulent suspension of finite-volume particles,” J. Comput. Phys.0021-9991 124, 337 (1996).
http://dx.doi.org/10.1006/jcph.1996.0064
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/2/10.1063/1.2166456
Loading
/content/aip/journal/pof2/18/2/10.1063/1.2166456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/18/2/10.1063/1.2166456
2006-02-06
2014-09-20

Abstract

The gravitational settling of an initially random suspension of small solid particles in homogeneous turbulence is investigated numerically. The simulations are based on a pseudospectral method to solve the fluid equations combined with a Lagrangian point-particle model for the particulate phase (Eulerian-Lagrangian approach). The focus is on the enhancement of the mean particle settling velocity in a turbulent carrier fluid, as compared to the settling velocity of a single particle in quiescent fluid. Results are presented for both one-way coupling, when the fluid flow is not affected by the presence of the particles, and two-way coupling, when the particles exert a feedback force on the fluid. The first case serves primarily for validation purposes. In the case with two-way coupling, it is shown that the effect of the particles on the carrier fluid involves an additional increase in their mean settling velocity compared to one-way coupling. The underlying physical mechanism is analyzed, revealing that the settling velocity enhancement depends on the particle loading, the Reynolds number, and the dimensionless Stokes settling velocity if the particle Stokes number is about unity. Also, for particle volume fractions , a turbulence modification is observed. Furthermore, a direct comparison with recent experimental studies by Aliseda et al. [J. Fluid Mech.468, 77 (Year: 2002)] and Yang and Shy [J. Fluid Mech.526, 171 (Year: 2005)] is performed for a microscale Reynolds number of the turbulent carrier flow.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/18/2/1.2166456.html;jsessionid=37gt69p4qmvv4.x-aip-live-03?itemId=/content/aip/journal/pof2/18/2/10.1063/1.2166456&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Small particles in homogeneous turbulence: Settling velocity enhancement by two-way coupling
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/2/10.1063/1.2166456
10.1063/1.2166456
SEARCH_EXPAND_ITEM