1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Effect of Marangoni and Coriolis forces on multicritical points in a Faraday experiment
Rent:
Rent this article for
USD
10.1063/1.2167994
/content/aip/journal/pof2/18/3/10.1063/1.2167994
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/3/10.1063/1.2167994
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Surface waves at the onset in a thin layer of mercury (, , and , , and ). The top left picture shows instability zones for subharmonic (black region) and harmonic (region under dots), respectively. The lowest point of the lowest zone ( is not shown in the picture as it is pushed up) gives critical acceleration and the critical wave number of parametrically excited surface waves. The plot at the top right shows the reduced forcing acceleration at the onset of waves. The curves at the bottom left show the variation of critical amplitudes of the vertical velocity (dashed-dotted line) and vertical vorticity and those on bottom right show critical amplitudes of the surface deformation (solid line) and temperature field , respectively, corresponding to the response.

Image of FIG. 2.
FIG. 2.

Effect of Marangoni and Coriolis forces on the Faraday instability. The first column shows the effect of purely Marangoni force. The top viewgraph shows harmonic (regions inside dots) and subharmonic (black regions) surface waves for in the absence of the Coriolis force. The lower viewgraph shows the least values of the forcing amplitude for the four lowest tongues as a function of the Marangoni number. The subharmonic solution (continuous line) are the only preferred solutions as the Marangoni effect becomes stronger. The second column shows the effect of the Coriolis force only on the excited waves. The top viewgraph displays the instability tongues for in the absence of the Marangoni effect. The lower viewgraph shows the possibility of only harmonic solutions (broken lines) with increasing values of . Fluid parameters (, , and ) are relevant for mercury at a dimensionless forcing frequency .

Image of FIG. 3.
FIG. 3.

Possible response at the onset of surface instability in the parameter space. The surface waves synchronous with forcing are called harmonic (), and those oscillating at half the forcing are called the subharmonic response. Surface waves with a wave number equal to the even multiple of are denoted as , and those with wave numbers equal to the odd multiple of are denoted by Sn for , where is the wave number of the first subharmonic response . The asterisk, circle, plus, and diamond correspond to , , , and , respectively. Fluid parameters (, , and ) are relevant for mercury at a dimensionless forcing frequency . Controlling the small rotation rate and the Marangoni number can lead to a response corresponding to the response on the onset of the surface wave in a thin layer of mercury.

Image of FIG. 4.
FIG. 4.

Variation of the reduced critical acceleration with a Marangoni number for different values of the Galileo number . Plots are arranged (clockwise starting from the top left) with decreasing values of . The solid and dashed curves represent the reduced critical acceleration, which is the minimum of the first subharmonic tongue, for the dimensionless forcing frequency and 350, respectively. Fluid parameters ( and ) are relevant for molten sodium.

Image of FIG. 5.
FIG. 5.

Variation of the nondimensional critical wave number with a Marangoni number for different values of the Galileo number . Plots are arranged (clockwise from the top left) with decreasing values of the . The solid and dashed curves represent the dimensionless critical wave number for the dimensionless forcing frequency and 350, respectively. Fluid parameters are as in Fig. 4.

Image of FIG. 6.
FIG. 6.

Influence of the Prandtl number on the critical forcing amplitude and wave number for different values of the Marangoni numbers . The parameters are , , , and .

Image of FIG. 7.
FIG. 7.

Influence of the Marangoni number on the critical value of the reduced acceleration for different dimensionless forcing frequencies. For a relatively larger value of the Marangoni number, the critical acceleration shows a minimum (see bottom right). The parameters are , , , and .

Image of FIG. 8.
FIG. 8.

Influence of the Marangoni number on the critical wave number for different values of forcing frequencies. always increases with increasing . The parameters are , , , and .

Loading

Article metrics loading...

/content/aip/journal/pof2/18/3/10.1063/1.2167994
2006-03-01
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of Marangoni and Coriolis forces on multicritical points in a Faraday experiment
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/3/10.1063/1.2167994
10.1063/1.2167994
SEARCH_EXPAND_ITEM