1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field
Rent:
Rent this article for
USD
10.1063/1.2215370
/content/aip/journal/pof2/18/7/10.1063/1.2215370
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/7/10.1063/1.2215370
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

(Top) Two-dimensional fore-aft symmetric inertialess streamline pattern for a torque-free cylinder in simple shear flow; the axis of the cylinder is aligned with the vorticity direction. The bold lines indicate the pair of separatrices that enclose the region of closed streamlines. (Bottom) Two-dimensional asymmetric streamline pattern for a torque-free cylinder in simple shear flow at small but finite . The finite separatrices, again indicated by bold lines, form a pair of recirculating wakes that bracket a central region of closed streamlines in between. The ordinates of the saddle points shown are not identically zero, but they are asymptotically small compared to their flow coordinates. The resulting streamline configuration is invariant to a rotation, and thence, consistent with the antisymmetry of simple shear.

Image of FIG. 2.
FIG. 2.

(Top) Fore-aft symmetric inertialess streamline pattern in the plane of shear for a torque-free sphere in simple shear flow. (Bottom) Corresponding three-dimensional streamline topology. Note the axisymmetric separatrix envelope that separates the closed from the open streamlines; here, the , , and axes correspond to the flow, gradient and vorticity directions of the ambient simple shear.

Image of FIG. 3.
FIG. 3.

(Top) Streamline pattern in the plane of shear for a torque-free sphere in simple shear flow for small but finite . (Bottom) Finite three-dimensional streamline topology is depicted.

Image of FIG. 4.
FIG. 4.

In-plane trajectory for in an ambient simple shear flow. The trajectory originates from , spirals outward, heading off downstream.

Image of FIG. 5.
FIG. 5.

Two orthogonal projections of an off-plane trajectory originating from for in an ambient simple shear flow. The trajectory approaches the plane of shear while spiraling outward, and eventually escapes downstream at approximately .

Image of FIG. 6.
FIG. 6.

Degenerate inertialess streamline configuration in a planar hyperbolic linear flow . (Top) Streamlines in the plane of symmetry, the separatrices being denoted by dashed lines and (bottom) three-dimensional axisymmetric envelope containing closed streamlines; the inset shows the streamlines of the undisturbed ambient linear flow.

Image of FIG. 7.
FIG. 7.

Characterization of the nature of the bifurcation at for a hyperbolic planar linear flow. (Top) Corresponds to the flow pattern at small but finite , and for a coordinate closer to the plane of symmetry, where the near-field trajectories spiral out; heat is carried away via the shaded convective channels. (Bottom) Flow pattern at a larger coordinate, where the finite streamline topology is altered in a reversed sense to yield inward-flowing convective channels in opposing quadrants.

Image of FIG. 8.
FIG. 8.

In-plane trajectory for in an ambient hyperbolic planar linear flow with . The trajectory originates from a point on , close to the sphere and exits via a convective channel that opens up for finite .

Image of FIG. 9.
FIG. 9.

Two orthogonal projections of an off-plane trajectory originating from for in an ambient hyperbolic planar linear flow with . (Left) projection as the trajectory spirals outward, and toward the plane of shear, eventually escaping via a convective channel close to the plane of symmetry and (right) projection shows the approach of the trajectory toward the plane of shear.

Image of FIG. 10.
FIG. 10.

Two orthogonal projections of an off-plane trajectory originating in an incoming convective channel, and initially heading straight toward the vorticity axis. Sufficiently close to the vorticity axis, it starts to spiral around it, gradually approaching the plane.

Image of FIG. 11.
FIG. 11.

Plot of the azimuthal correction to the coordinates of the fixed points in the plane of symmetry; is plotted as a function of for planar hyperbolic linear flows.

Image of FIG. 12.
FIG. 12.

Plot of , defined in the text, as a function of for hyperbolic planar linear flows.

Image of FIG. 13.
FIG. 13.

Differing nature of the invariant manifolds associated with the saddle points and in the plane of symmetry, as changes across ; the abbreviations and denote the unstable and stable manifolds, respectively.

Image of FIG. 14.
FIG. 14.

(Left) Inertialess closed streamlines in the plane of symmetry of an elliptic linear flow with . (Right) Spiraling in-plane trajectory for in the same linear flow; as the spiraling is very tight for small , a slightly larger value is chosen for an exaggerated depiction.

Image of FIG. 15.
FIG. 15.

Two orthogonal projections of an off-plane trajectory in an elliptic linear flow with and as it spirals toward the plane.

Image of FIG. 16.
FIG. 16.

Streamline pattern in the plane for a torque-free spherical particle in a pure quadratic flow— in (49) . In a reference frame moving with the particle, the fluid elements close to move faster than the particle, whereas those at greater ordinate values lag behind. The symmetry of the pattern implies a zero torque, and thence, a zero rate of rotation.

Image of FIG. 17.
FIG. 17.

Streamline pattern in the plane for a torque-free spherical particle in a general quadratic flow for small values of in (49) . The degeneracy of the pattern is twofold—the presence of a homoclinic point whose stable and unstable manifolds are coincident, forming a loop, that encloses closed streamlines within; the presence of a heteroclinic connection between the two saddle points and .

Image of FIG. 18.
FIG. 18.

Streamline pattern in the plane for a torque-free spherical particle in a general quadratic flow for larger values of in (49) ; the velocity field arising from the linear part of the flow is now dominant. The up-down asymmetry of the streamline pattern arises because the linear and quadratic parts of the flow reinforce (oppose) each other for . The invariant manifolds of a saddle point separate far-field regions where the quadratic portion drives flow from right to left from regions just above the particle where the fluid flows in the opposite direction.

Loading

Article metrics loading...

/content/aip/journal/pof2/18/7/10.1063/1.2215370
2006-07-14
2014-04-21
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field
http://aip.metastore.ingenta.com/content/aip/journal/pof2/18/7/10.1063/1.2215370
10.1063/1.2215370
SEARCH_EXPAND_ITEM