1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Local instabilities of flow in a flexible channel: Asymmetric flutter driven by a weak critical layer
Rent:
Rent this article for
USD
10.1063/1.3337824
/content/aip/journal/pof2/22/3/10.1063/1.3337824
http://aip.metastore.ingenta.com/content/aip/journal/pof2/22/3/10.1063/1.3337824
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Poiseuille flow in an asymmetric compliant channel, subject to an external pressure gradient .

Image of FIG. 2.
FIG. 2.

Eigenvalue spectra for an asymmetric compliant channel where all the modes are linearly stable: (a) temporal modes in the -plane for , , , and ; (b) spatial modes in the -plane for , , , and . The labels SD, TS, TWF, , , , and are described in the text. The crosses in panel (b) represent the leading-order asymptotic approximation to the surface-based modes satisfying Eqs. (33b) and (64). The TWF modes are labeled (u) or (d) to show which are propagating upstream or downstream.

Image of FIG. 3.
FIG. 3.

Eigenfunctions of the four surface-based modes for , at , calculated numerically (solid lines); (a) downstream-propagating TWF; (b) upstream-propagating TWF; (c) downstream-propagating SD; and (d) upstream-propagating SD. The filled black circles on each panel represent the leading-order asymptotic approximation [, Eq. (32a)] normalized using the numerically determined pressure on the compliant wall . The crosses in panel (a) represent the first order correction [, see Eq. (53)] for neutrally stable downstream-propagating TWF.

Image of FIG. 4.
FIG. 4.

Neutrally stability curves for , calculated numerically (solid lines): (a) wavenumber-Reynolds number plane; (b) frequency-Reynolds number plane; (c) the corresponding wave speed of the neutrally stable modes against Reynolds number. The dashed line is the asymptotic approximation to the lower branch of TS instabilities (26). The filled black circles represent the asymptotic approximation to neutrally stable TWF instabilities (33b) and (57).

Image of FIG. 5.
FIG. 5.

Variation in the critical wavenumber for lower branch TS instability against dimensionless membrane tension, shown for , 1, 10, and 100. The corresponding result for a rigid channel [obtained by Bogdanova and Ryzhov (Ref. 52)] is illustrated using black circles.

Image of FIG. 6.
FIG. 6.

Eigenfunction of the downstream-propagating TWF mode at , computed numerically (solid lines) where (temporally unstable); (a) the cross-stream variation in ; (b) the variation in across the Stokes’ layer adjacent to the wall at ; (c) the cross-stream variation in ; and (d) the flow structure including the weak critical layer in the center of the channel. The filled black circles in [(a)–(c)] correspond to the inviscid core solution Eq. (32a) and the crosses in (b) to the inner solution (43) in the Stokes’ layer close to . The leading-order wave speed from the asymptotic approximation (33b) and (57) is .

Image of FIG. 7.
FIG. 7.

The numerically computed wave speed (solid lines) of neutrally stable TWF modes for , (corresponding to Fig. 4) and plotted against wavenumber . The filled black circles are the leading-order asymptotic approximation [Eq. (33b)]; the crosses also include the first order correction (50).

Image of FIG. 8.
FIG. 8.

Neutrally stable TWF mode for and at , normalized so that the amplitude is ; (a) snapshot of the wall position; (b) contour plot of the instantaneous kinetic energy flux due to nonlinear Reynolds stresses ; (c) contour plot of the rate of energy loss ; insets show (c)(i) contour plot of the rate of energy loss across the Stokes layer close to and (c)(ii) contour plot of across the inviscid core. In (b) and (c) the thick solid line corresponds to the zero contour and in the shaded (unshaded) regions the plotted quantity is positive (negative). [(d) and (e)] Eigenfunctions of the averaged integrands and for a neutrally stable TWF mode scaled to illustrate (d) the variations in the Stokes layer close to ; (e) the variation across the center of the channel.

Image of FIG. 9.
FIG. 9.

Neutral stability curves of the downstream propagating traveling wave flutter mode for for , , , 1, 10, and .

Image of FIG. 10.
FIG. 10.

Neutral stability curves calculated numerically for and of the local modes (a) in the wavenumber-Reynolds number plane; (b) frequency-Reynolds number plane. The filled black circles are the predictions of a corresponding one-dimensional model (Ref. 4). The dashed lines are the large asymptotes to the one-dimensional model [Eq. (68)] and the dot-dashed line is the large asymptote to the lower branch TS mode [Eq. (26)].

Loading

Article metrics loading...

/content/aip/journal/pof2/22/3/10.1063/1.3337824
2010-03-18
2014-04-20
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local instabilities of flow in a flexible channel: Asymmetric flutter driven by a weak critical layer
http://aip.metastore.ingenta.com/content/aip/journal/pof2/22/3/10.1063/1.3337824
10.1063/1.3337824
SEARCH_EXPAND_ITEM