banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Impulse and particle dislodgement under turbulent flow conditions
Rent this article for


Image of FIG. 1.
FIG. 1.

Definition sketch of the forces acting on a spherical particle resting on identical size densely packed spheres, side view (left) and top view (right) of the bed geometry.

Image of FIG. 2.
FIG. 2.

Representation of the impulse events in the time series. The event is characterized by and values, representing force magnitude and duration, the product of which is (corresponds to the shaded rectangular area below the line). and were determined by interpolating the adjacent data points in the time series. The vertical line between the and indicates that the particle movement was observed during the event.

Image of FIG. 3.
FIG. 3.

Side view (right) and top view (upper left corner) sketches of the mobile test particle and pocket geometry (diameter of the grains, ).

Image of FIG. 4.
FIG. 4.

From top to bottom: representative time series of, , impulse , and photodetector output, from run E1. Dashed vertical lines in the top two plots indicate detected particle movements. Secondary vertical axes in the top two plots: binary 0/1 signal. Explanation of the solid vertical lines in the bottom plot: (a) beginning of a rocking event, (b) beginning of a pivoting event, (c) instant when the test particle reached the retaining pin, (d) instant when the test particle started rolling back to its original pocket, and (e) instant when the particle reached its original pocket.

Image of FIG. 5.
FIG. 5.

Histograms of , , , and from left to right for the run E1. Nearly 280 000 data points (counts) for and total of 1978 data points for , , and are represented in each histogram.

Image of FIG. 6.
FIG. 6.

Relationship between impulse intensity, , and particle Reynolds number, .

Image of FIG. 7.
FIG. 7.

Plots of the function given by Eq. (5) for a range of values.

Image of FIG. 8.
FIG. 8.

Comparison of Eq. (5) with measured pdfs for E1–E8. Solid lines are used to show pdfs obtained from Eq. (5).

Image of FIG. 9.
FIG. 9.

Semilogarithmic plot of measured pdfs from all eight runs. Equation (5) is also presented with and 1.1 for comparison.

Image of FIG. 10.
FIG. 10.

vs plots. 1978 data points from run E1 (left), 1101 data points from run E4 (right). Black circles indicate , combinations that are associated with full particle dislodgement (pivoting).

Image of FIG. 11.
FIG. 11.

(a) Illustration of the approach used for varying the critical . (b) Number of detected impulses vs the ratio of critical level used to the original .

Image of FIG. 12.
FIG. 12.

vs plot. The region where movement and no movement areas overlap is shown with a gray band between the impulse values of 0.0034 and . Horizontal arrow indicates the critical impulse level.

Image of FIG. 13.
FIG. 13.

The plot of number of impulse events above critical impulse per min vs total number of impulse events above critical per min. Data points with black circles are from all eight runs where a constant was used. White and gray circles indicate results from runs E1 and E5, respectively, where various values were used. Data with the plus sign indicate the actual particle movements vs observed in each run.

Image of FIG. 14.
FIG. 14.

Illustration of the probability analysis. The probability that a flow event will generate a level of impulse that exceeds a specified critical level, , is indicated by the shaded area and is assumed to be equal to the probability of particle entrainment, .

Image of FIG. 15.
FIG. 15.

Probability of particle entrainment vs probability of exceedance of critical impulse.

Image of FIG. 16.
FIG. 16.

Dimensionless bed load parameter vs shields stress (left -axis) from Refs. 10 and 12. Note that data only in the range between 0.005 and 0.016 were used. The number of impulse events above critical impulse per min (right -axis) vs shields stress is also plotted.


Generic image for table
Table I.

Summary of the test conditions for entrainment experiments.

Generic image for table
Table II.

Summary of the impulse parameters obtained from 15 min runs.

Generic image for table
Table III.

Number of impulse events and particle movements observed for 15 min. Note that .

Generic image for table
Table IV.

Summary of the results from conditions where various critical values were used for run E1.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Impulse and particle dislodgement under turbulent flow conditions