1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Inertia dominated thin-film flows over microdecorated surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/22/7/10.1063/1.3454769
1.
1.E. D. Cohen and E. B. Gutoff, Modern Coating and Drying Technology (Wiley, Hoboken, 1992).
2.
2.G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, New York, 2005).
3.
3.S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889 (2000).
http://dx.doi.org/10.1063/1.870438
4.
4.R. E. Khayat and S. R. Welke, “Influence of inertia, gravity, and substrate topography on the two-dimensional transient coating flow of a thin Newtonian fluid film,” Phys. Fluids 13, 355 (2001).
http://dx.doi.org/10.1063/1.1336154
5.
5.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science 295, 647 (2002).
http://dx.doi.org/10.1126/science.1066238
6.
6.J. Ou, G. R. Moss, and J. P. Rothstein, “Enhanced mixing in laminar flows using ultrahydrophobic surfaces,” Phys. Rev. E 76, 016304 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.016304
7.
7.E. Lauga and H. A. Stone, “Effective slip in pressure-driven stokes flow,” J. Fluid Mech. 489, 55 (2003).
http://dx.doi.org/10.1017/S0022112003004695
8.
8.G. Gamrat, M. Favre-Marinet, S. Le Person, R. Baviere, and F. Ayela, “An experimental study and modelling of roughness effects on laminar flow in microchannels,” J. Fluid Mech. 594, 399 (2007).
9.
9.S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. Van Swol, P. Shah, and C. J. Brinker, “Effective slip on textured superhydrophobic surfaces,” Phys. Fluids 17, 051701 (2005).
http://dx.doi.org/10.1063/1.1896405
10.
10.C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, and L. Bocquet, “Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries,” Phys. Fluids 19, 123601 (2007).
http://dx.doi.org/10.1063/1.2815730
11.
11.C. Lee, C. -H. Choi, and C. -J. Kim, “Structured surfaces for a giant liquid slip,” Phys. Rev. Lett. 101, 064501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.064501
12.
12.S. Y. Saprykin, R. J. Koopmans, and S. Kalliadasis, “Free-surface thin-film flows over topography: Influence of inertia and viscoelasticity,” J. Fluid Mech. 578, 271 (2007).
http://dx.doi.org/10.1017/S0022112007004752
13.
13.L. E. Stillwagon and R. G. Larson, “Levelling of thin films over uneven substrates during spin coating,” Phys. Fluids A 2, 1937 (1990).
http://dx.doi.org/10.1063/1.857669
14.
14.L. M. Peurrung and D. B. Graves, “Film thickness profiles over topography in spin coating,” J. Electrochem. Soc. 138, 2115 (1991).
http://dx.doi.org/10.1149/1.2085935
15.
15.A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, “Patterning flows using grooved surfaces,” Anal. Chem. 74, 5306 (2002).
http://dx.doi.org/10.1021/ac0257389
16.
16.C. Y. Wang, “Flow over a surface with parallel grooves,” Phys. Fluids 15, 1114 (2003).
http://dx.doi.org/10.1063/1.1560925
17.
17.D. F. James and A. M. J. Davis, “Flow at the interface of a model fibrous porous medium,” J. Fluid Mech. 426, 47 (2001).
http://dx.doi.org/10.1017/S0022112000002160
18.
18.M. F. Tachie, D. F. James, and I. G. Currie, “Velocity measurements of a shear flow penetrating a porous medium,” J. Fluid Mech. 493, 319 (2003).
http://dx.doi.org/10.1017/S0022112003005986
19.
19.E. Dressaire, L. Courbin, J. Crest, and H. A. Stone, “Thin-film flows over microdecorated surfaces: Observations of polygonal hydraulic jumps,” Phys. Rev. Lett. 102, 194503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.194503
20.
20.H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
21.
21.M. Bazant and O. I. Vinogradova, “Tensorial hydrodynamic slip,” J. Fluid Mech. 613, 125 (2008).
http://dx.doi.org/10.1017/S002211200800356X
22.
22.R. S. Voronov, D. V. Papavassiliou, and L. L. Lee, “Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle,” Ind. Eng. Chem. Res. 47, 2455 (2008).
http://dx.doi.org/10.1021/ie0712941
23.
23.J. Wu, B. Yu, and M. Yun, “A resistance model for flow through porous media,” Transp. Porous Media 71, 331 (2008).
http://dx.doi.org/10.1007/s11242-007-9129-0
24.
24.D. L. Koch and A. J. C. Ladd, “Moderate Reynolds number flows through periodic and random arrays of aligned cylinders,” J. Fluid Mech. 31, 349 (1997).
25.
25.E. J. Watson, “The radial spread of a liquid jet over a horizontal plane,” J. Fluid Mech. 20, 481 (1964).
http://dx.doi.org/10.1017/S0022112064001367
26.
26.J. W. M. Bush and J. M. Aristoff, “The influence of surface tension on the circular hydraulic jump,” J. Fluid Mech. 489, 229 (2003).
http://dx.doi.org/10.1017/S0022112003005159
27.
27.C. Ellegaard, A. E. Hansen, A. Haaning, K. Hansen, A. Marcussen, T. Bohr, J. L. Hansen, and S. Watanabe, “Creating corners in kitchen sinks,” Nature (London) 392, 767 (1998).
http://dx.doi.org/10.1038/33820
28.
28.J. W. M. Bush, J. M. Aristoff, and A. E. Hosoi, “An experimental investigation of the stability of the circular hydraulic jump,” J. Fluid Mech. 558, 33 (2006).
http://dx.doi.org/10.1017/S0022112006009839
29.
29.A. Craik, R. Latham, M. Fawkes, and P. Gibbon, “The circular jump,” J. Fluid Mech. 112, 347 (1981).
http://dx.doi.org/10.1017/S002211208100044X
30.
30.X. Liu and J. H. Lienhard, “The hydraulic jump in circular jet impingement and in other thin liquid films,” Exp. Fluids 15, 108 (1993).
http://dx.doi.org/10.1007/BF00190950
http://aip.metastore.ingenta.com/content/aip/journal/pof2/22/7/10.1063/1.3454769
Loading
/content/aip/journal/pof2/22/7/10.1063/1.3454769
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/22/7/10.1063/1.3454769
2010-07-02
2014-10-21

Abstract

We analyze the inertia dominated flow of thin liquid films on microtextured substrates, which here are assemblies of micron-size posts arranged on regular lattices. We focus on situations for which the thin-film thickness and the roughness characteristic length scale are of the same order of magnitude, i.e., a few hundred microns. We assume that the liquidflows isotropically through the roughness at a flow rate that depends on the geometrical features of the porous layer; above the texture, the flow is characterized by a larger Reynolds number and modeled using a boundary layer approach. The influence of the microtexture on the thin-filmflow above the microposts is captured by a reduction of the flow rate due to the leakage flow through the texture and a slip boundary condition, which depends on the flow direction as well as on the lattice properties. In this way, the velocity field in the free surface flow adopts the symmetry of the microtexture underneath. The results of this model are in good agreement with experimental observations obtained for thin-filmflows formed upon jet impact on microtextures. The characteristics of the polygonal hydraulic jumps that we obtain depend on both the jet parameters and the topographical features of the surface roughness. We use the measurements and the numerical predictions to estimate the flow rate through the shallow porous layer and the effective slip length for this inertia dominated flow regime. We also discuss the limitations of the model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/22/7/1.3454769.html;jsessionid=486rdehkm28j8.x-aip-live-03?itemId=/content/aip/journal/pof2/22/7/10.1063/1.3454769&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inertia dominated thin-film flows over microdecorated surfaces
http://aip.metastore.ingenta.com/content/aip/journal/pof2/22/7/10.1063/1.3454769
10.1063/1.3454769
SEARCH_EXPAND_ITEM