1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/24/5/10.1063/1.4718653
1.
1. K. J. Ruschak and L. E. Scriven, “Rimming flow of liquid in a rotating horizontal cylinder,” J. Fluid Mech. 76, 113125 (1976).
http://dx.doi.org/10.1017/S0022112076003157
2.
2. O. Menekse, J. V. Wood, and D. S. Riley, “Investigation of Fe2O3 − Al and Cr2O3 − Al reactions using high speed video camera,” Mat. Sci. Technol. 22, 199205 (2006).
http://dx.doi.org/10.1179/174328406X79397
3.
3. M. M. Driscoll, C. S. Stevens, and S. R. Nagel, “Thin film formation during splashing of viscous liquids,” Phys. Rev. E 82, 0363031 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.036302
4.
4. M. Farrall, “Numerical modelling of two-phase flow in a simplified bearing chamber,” Ph.D. dissertation (University of Nottingham, Nottingham, 2000).
5.
5. M. Farrall, S. Hibberd, K. Simmons, and D. Giddings, “Prediction of air/oil exit flows in a commercial aero-engine bearing chamber,” J. Aerosp. Eng. 220, 197202 (2006).
http://dx.doi.org/10.1243/09544100JAERO40
6.
6. M. Farrall, S. Hibberd, K. Simmons, and P. Gorse, “A numerical model for oil film flow in an aeroengine bearing chamber and comparison to experimental data,” Trans. ASME: J. Eng. Gas Turbines Power 128, 111117 (2006).
http://dx.doi.org/10.1115/1.1924719
7.
7. P. D. Hicks and R. Purvis, “Air cushioning and bubble entrapment in three-dimensional droplet impacts,” J. Fluid Mech. 649, 135163 (2010).
http://dx.doi.org/10.1017/S0022112009994009
8.
8. C. J. Noakes, “The dynamics of liquid films on rotating surfaces,” Ph.D. dissertation (University of Nottingham, Nottingham, 2001).
9.
9. C. J. Noakes, J. R. King, and D. S. Riley, “The effect of mass transfer on steady two-dimensional rimming flow,” J. Eng. Math. 71, 223236 (2011).
http://dx.doi.org/10.1007/s10665-010-9434-4
10.
10. M. Villegas-Díaz, “Analytical and numerical studies of thin-film rimming flow subject to surface shear,” Ph.D. dissertation (University of Nottingham, Nottingham, 2005).
11.
11. M. Villegas-Díaz, H. Power, and D. S. Riley, “On the stability of rimming flows to two-dimensional disturbances,” Fluid Dyn. Res. 33, 141172 (2003).
http://dx.doi.org/10.1016/S0169-5983(03)00043-1
12.
12. M. Villegas-Díaz, H. Power, and D. S. Riley, “Analytical and numerical studies of the stability of thin-film rimming flow subject to surface shear,” J. Fluid Mech. 541, 317344 (2005).
http://dx.doi.org/10.1017/S0022112005006142
13.
13. S. T. Thoroddsen and L. Mahadevan, “Experimental study of coating flows in a partially-filled horizontally rotating cylinder,” Exp. Fluids 23, 113 (1997).
http://dx.doi.org/10.1007/s003480050080
14.
14. H. K. Moffatt, “Behaviour of a viscous film on the outer surface of a rotating cylinder,” J. Méch. 16, 651673 (1977).
15.
15. V. V. Pukhnachev, “Motion of a liquid film on a surface of a rotating cylinder in a gravitational field,” J. Appl. Mech. Tech. Phys. 18, 344351 (1977).
http://dx.doi.org/10.1007/BF00851656
16.
16. R. E. Johnson, “Steady-state coating flows inside a rotating horizontal cylinder,” J. Fluid Mech. 190, 321342 (1988).
http://dx.doi.org/10.1017/S0022112088001338
17.
17. S. B. G. O’Brien and E. G. Gath, “The location of a shock in rimming flow,” Phys. Fluids 10, 10401042 (1998).
http://dx.doi.org/10.1063/1.869630
18.
18. J. J. Ashmore, A. E. Hosoi, and H. A. Stone, “The effect of surface tension on rimming flows in a partially filled rotating cylinder,” J. Fluid Mech. 479, 6598 (2003).
http://dx.doi.org/10.1017/S0022112002003312
19.
19. A. E. Hosoi and L. Mahadevan, “Axial instability of a free-surface front in a partially filled horizontal rotating cylinder,” Phys. Fluids 11, 97106 (1999).
http://dx.doi.org/10.1063/1.869905
20.
20. M. Tirumkudulu and A. Acrivos, “Coating flows within a rotating horizontal cylinder: Lubrication analysis, numerical computations, and experimental measurements,” Phys. Fluids 13, 1419 (2001).
http://dx.doi.org/10.1063/1.1329909
21.
21. S. K. Wilson, R. Hunt, and B. R. Duffy, “On the critical solutions in coating and rimming flows on a uniformly rotating horizontal cylinder,” Q. J. Mech. Appl. Math. 55, 357387 (2002).
http://dx.doi.org/10.1093/qjmam/55.3.357
22.
22. A. Acrivos and B. Jin, “Rimming flows within a rotating horizontal cylinder: asymptotic analysis of the thin-film lubrication equations and stability of their solutions,” J. Eng. Math. 50, 99120 (2004).
http://dx.doi.org/10.1007/s10665-004-1772-7
23.
23. E. S. Benilov and S. B. G. O’Brien, “Inertial instability of a liquid film inside a rotating horizontal cylinder,” Phys. Fluids 17, 116 (2005).
http://dx.doi.org/10.1063/1.1905964
24.
24. C. J. Noakes, J. R. King, and D. S. Riley, “On the development of rational approximations incorporating inertial effects in coating and rimming flows,” Q. J. Mech. Appl. Math. 59, 163190 (2006).
http://dx.doi.org/10.1093/qjmam/hbj001
25.
25. M. A. Kelmanson, “On inertial effects in the Moffatt-Pukhnachov coating-flow problem,” J. Fluid Mech. 633, 327353 (2009).
http://dx.doi.org/10.1017/S0022112009006703
26.
26. E. J. Hinch and M. Kelmanson, “On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder,” Proc. R. Soc. London 459, 11931213 (2003).
http://dx.doi.org/10.1098/rspa.2002.1069
27.
27. E. J. Hinch, M. Kelmanson, and P. Metcalfe, “Shock-like free-surface perturbations in low-surface-tension, viscous, thin-film flow exterior to a rotating cylinder,” Proc. R. Soc. London 460, 29752991 (2004).
http://dx.doi.org/10.1098/rspa.2004.1327
28.
28. C. J. Noakes, J. R. King, and D. S. Riley, “On three-dimensional stability of a uniform rigidly rotating film on a rotating cylinder,” Q. J. Mech. Appl. Math. 58, 229256 (2005).
http://dx.doi.org/10.1093/qjmamj/hbi011
29.
29. P. Evans, L. Schwartz, and R. Roy, “Three-dimensional solutions for coating flow on a rotating horizontal cylinder: Theory and experiment,” Phys. Fluids 17, 072102 (2005).
http://dx.doi.org/10.1063/1.1942523
30.
30. E. S. Benilov, S. J. Chapman, J. B. McLeod, J. R. Ockendon, and V. S. Zubkov, “On liquid films on an inclined plate,” J. Fluid Mech. 663, 5369 (2010).
http://dx.doi.org/10.1017/S002211201000337X
31.
31. E. S. Benilov, V. N. Lapin, and S. B. G. O’Brien, “On rimming flows with shocks,” J. Eng. Math. (to be published).
http://dx.doi.org/10.10007/s10665-011-9512-2
32.
32. Y. Lu, Z. Liu, and T. Xu, “Numerical simulation of aero-engine lubrication system,” J. Eng. Gas Turbines Power 131, 034503 (2009).
http://dx.doi.org/10.1115/1.3026573
33.
33. E. S. Benilov, M. S. Benilov, and S. B. G. O’Brien, “Existence and stability of regularized shocks, with applications to rimming flows,” J. Eng. Math. 63, 197212 (2009).
http://dx.doi.org/10.1007/s10665-008-9227-1
34.
34. G. J. B. Black, “Theoretical studies of thin-film flows,” M.Phil. dissertation (University of Strathclyde, Glasgow, 2002).
35.
35. D. Y. Hsieh and S. P. Ho, Wave and Stability in Fluids (World Scientific, Singapore, 1994).
36.
36. L. N. Trefethen, Spectral methods in MATLAB, (SIAM, Philadelphia, 2000).
37.
37. E. Momoniat, R. Ravindran, and S. Roy, “The influence of slot injection/suction on the spreading of a thin film flow under gravity and surface tension,” Acta Mech. 211, 6171 (2010).
http://dx.doi.org/10.1007/s00707-009-0215-y
38.
38. U. Thiele and E. Knobloch, “Thin liquid films on a slightly inclined heated plate,” Physica D 190, 213248 (2004).
http://dx.doi.org/10.1016/j.physd.2003.09.048
39.
39. D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and Rheology, Butterworth-Heinemann Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1991).
40.
40. J. C. Slattery, Advanced Transport Phenomena, Cambridge Series in Chemical Engineering (Cambridge University Press, Cambridge, England, 1999).
41.
41.T. B. Benjamin, W. G. Pritchard, and S. J. Tavener, “Steady and unsteady flows of a highly viscous liquid in a rotating horizontal cylinder” (1993), preprint.
http://aip.metastore.ingenta.com/content/aip/journal/pof2/24/5/10.1063/1.4718653
Loading
/content/aip/journal/pof2/24/5/10.1063/1.4718653
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/24/5/10.1063/1.4718653
2012-05-30
2014-08-01

Abstract

Motivated by applications in aero-engines, steady two-dimensional thin-filmflow on the inside of a circular cylinder is studied when the filmsurface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the filmsurface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/24/5/1.4718653.html;jsessionid=73pupmh54saqv.x-aip-live-06?itemId=/content/aip/journal/pof2/24/5/10.1063/1.4718653&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder
http://aip.metastore.ingenta.com/content/aip/journal/pof2/24/5/10.1063/1.4718653
10.1063/1.4718653
SEARCH_EXPAND_ITEM