1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Inclined, collisional sediment transport
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4823857
1.
1. P. Frey and M. Church, “How river beds move,” Science 325, 15091510 (2009).
http://dx.doi.org/10.1126/science.1178516
2.
2. M. A. Hassan, M. Church, and A. P. Schick, “Distances of movements of coarse particles in gravel bed streams,” Water Resour. Res. 27, 503511, doi:10.1029/90WR02762 (1991).
http://dx.doi.org/10.1029/90WR02762
3.
3. I. McEwan, B. J. Jefcoate, and B. B. Willetts, “The grain-fluid interaction as a self-stabilizing mechanism in fluvial bedload transport,” Sedimentology 46, 407416 (1999).
http://dx.doi.org/10.1046/j.1365-3091.1999.00197.x
4.
4. V. Nikora, H. Habersack, T. Huber, and I. McEwan, “On bed particle diffusion in gravel bed flows under weak bed load transport,” Water Resour. Res. 38, 171179, doi:10.1029/2001WR000513 (2002).
http://dx.doi.org/10.1029/2001WR000513
5.
5. E. Lajeunesse, L. Malverti, and F. Charru, “Bed load transport in turbulent flow at the grain scale: Experiments and modeling,” J. Geophys. Res. 115, F04001, doi:10.1029/2009JF001628 (2010).
http://dx.doi.org/10.1029/2009JF001628
6.
6. D. Berzi, “Transport formula for collisional sheet flows with turbulent suspension,” J. Hydraul. Eng. 139(4), 359363 (2013).
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000686
7.
7. J. T. Jenkins and D. M. Hanes, “Collisional sheet flows of sediment driven by a turbulent fluid,” J. Fluid Mech. 370, 2952 (1998).
http://dx.doi.org/10.1017/S0022112098001840
8.
8. J. T. Jenkins and S. B. Savage, “A theory for the rapid flow of identical, smooth, nearly elastic particles,” J. Fluid Mech. 130, 187202 (1983).
http://dx.doi.org/10.1017/S0022112083001044
9.
9. V. Garzo and J. W. Dufty, “Dense fluid transport for inelastic hard spheres,” Phys. Rev. E 59, 5895 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.5895
10.
10. I. Goldhirsch, “Rapid granular flows,” Annu. Rev. Fluid Mech. 35, 267293 (2003).
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
11.
11. D. Berzi, “Analytical solution of collisional sheet flows,” J. Hydraul. Eng. 137, 12001207 (2011).
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000420
12.
12. C. T. Yang and S. Wan, “Comparison of selected bed-material load formulas,” J. Hydraul. Eng. 117(8), 973989 (1991).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1991)117:8(973)
13.
13. T.-J. Hsu, J. T. Jenkins, and P. L.-F. Liu, “On two-phase sediment transport: Dilute flow,” J. Geophys. Res. 108(C3), 3057, doi:10.1029/2001JC001276 (2003).
http://dx.doi.org/10.1029/2001JC001276
14.
14. T.-J. Hsu, J. T. Jenkins, and P. L.-F. Liu, “On two-phase sediment transport: Sheet flow of massive particles,” Proc. R. Soc. London, Ser. A 460(2048), 22232250 (2004).
http://dx.doi.org/10.1098/rspa.2003.1273
15.
15. H. Capart and L. Fraccarollo, “Transport layer structure in intense bed-load,” Geophys. Res. Lett. 38, L20402, doi:10.1029/2011GL049408 (2011).
http://dx.doi.org/10.1029/2011GL049408
16.
16. J. S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, London, 1973).
17.
17. F. J. Pugh and K. C. Wilson, “Velocity and concentration distributions in sheet flow above plane beds,” J. Hydraul. Eng. 125(2), 117125 (1999).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:2(117)
18.
18. D. Berzi and J. T. Jenkins, “Surface flows of inelastic spheres,” Phys. Fluids 23, 013303 (2011).
http://dx.doi.org/10.1063/1.3532838
19.
19. J. T. Jenkins, “Dense inclined flows of inelastic spheres,” Granular Matter 10, 4752 (2007).
http://dx.doi.org/10.1007/s10035-007-0057-z
20.
20. G. Barnocky and R. H. Davis, “Elastohydrodynamic collision and rebound of spheres: Experimental verification,” Phys. Fluids 31, 1324 (1988).
http://dx.doi.org/10.1063/1.866725
21.
21. F. Yang and M. Hunt, “Dynamics of particle-particle collisions in a viscous liquid,” Phys. Fluids 18(12), 121506 (2006).
http://dx.doi.org/10.1063/1.2396925
22.
22. R. Iverson, “The physics of debris flows,” Rev. Geophys. 35(3), 245296, doi:10.1029/97RG00426 (1997).
http://dx.doi.org/10.1029/97RG00426
23.
23. J. T. Jenkins and C. Zhang, “Kinetic theory for identical, frictional, nearly elastic spheres,” Phys. Fluids 14(3), 12281235 (2002).
http://dx.doi.org/10.1063/1.1449466
24.
24. J. T. Jenkins and D. Berzi, “Dense inclined flows of inelastic spheres: Tests of an extension of kinetic theory,” Granular Matter 12, 151158 (2010).
http://dx.doi.org/10.1007/s10035-010-0169-8
25.
25. R. A. Bagnold, “The flow of cohesionless grains in fluids,” Philos. Trans. R. Soc. London, Ser. A 249, 235297 (1956).
http://dx.doi.org/10.1098/rsta.1956.0020
26.
26. G. M. Smart, “Sediment transport formula for steep channels,” J. Hydraul. Eng. 110(3), 267276 (1984).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:3(267)
27.
27. P. Wiberg and J. D. Smith, “Model for calculating bed load transport of sediment,” J. Hydraul. Eng. 115(1), 101123 (1989).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1989)115:1(101)
28.
28. A. Kovacs and G. Parker, “A new vectorial bedload formulation and its application to the time evolution of straight river channels,” J. Fluid Mech. 267, 153183 (1994).
http://dx.doi.org/10.1017/S002211209400114X
29.
29. G. Seminara, L. Solari, and G. Parker, “Bed load at low shields stress on arbitrarily sloping beds: Failure of the Bagnold hypothesis,” Water Resour. Res. 38, 3113116, doi:10.1029/2001WR000681 (2002).
http://dx.doi.org/10.1029/2001WR000681
30.
30. D. Berzi, J. T. Jenkins, and M. Larcher, “Debris flows: Recent advances in experiments and modeling,” Adv. Geophys. 52, 103138 (2010).
http://dx.doi.org/10.1016/S0065-2687(10)52002-8
31.
31. K. C. Wilson, “Analysis of bed-load motion at high shear stress,” J. Hydraul. Eng. 113(1), 97103 (1987).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:1(97)
32.
32. D. Berzi and J. T. Jenkins, “Approximate analytical solutions in a model for highly concentrated granular-fluid flows,” Phys. Rev. E 78, 011304 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.011304
33.
33. D. Berzi and J. T. Jenkins, “Steady inclined flows of granular-fluid mixtures,” J. Fluid Mech. 641, 359387 (2009).
http://dx.doi.org/10.1017/S0022112009991510
34.
34. T. Takahashi, Debris Flow, IAHR Monograph Series (Balkema, Rotterdam, 1991).
35.
35. J. M. Pasini and J. T. Jenkins, “Aeolian transport with collisional suspension,” Philos. Trans. R. Soc. London, Ser. A 363, 16251646 (2005).
http://dx.doi.org/10.1098/rsta.2005.1598
36.
36. R. I. Ferguson and M. Church, “A simple universal equation for grain settling velocity,” J. Sediment Res. 74, 933937 (2004).
http://dx.doi.org/10.1306/051204740933
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4823857
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4823857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4823857
2013-10-10
2014-09-30

Abstract

We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4823857.html;jsessionid=cdjd9ls2qph15.x-aip-live-06?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4823857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inclined, collisional sediment transport
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4823857
10.1063/1.4823857
SEARCH_EXPAND_ITEM