1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Dependence of advection-diffusion-reaction on flow coherent structures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4823991
1.
1. G. I. Taylor,“Diffusion by continuous movements,” Proc. London Math. Soc. s2-20, 196212 (1922).
http://dx.doi.org/10.1112/plms/s2-20.1.196
2.
2. A. J. Majda and P. R. Kramer, “Simplified models of turbulent diffusion: Theory, numerical modeling, and physical phenomena,” Phys. Rep. 314, 237574 (1999).
http://dx.doi.org/10.1016/S0370-1573(98)00083-0
3.
3. Z. Warhaft,“Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech. 32, 203240 (2000).
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
4.
4. P. H. Haynes and J. Vanneste, “What controls the decay of passive scalars in smooth flows?,” Phys. Fluids 17, 097103 (2005).
http://dx.doi.org/10.1063/1.2033908
5.
5. J.-L. Thiffeault, “Stretching and curvature of material lines in chaotic flows,” Physica D 198(3–4), 169181 (2004).
http://dx.doi.org/10.1016/j.physd.2004.04.009
6.
6. C. R. Doering and J.-L. Thiffeault, “Multiscale mixing efficiencies for steady sources,” Phys. Rev. E 74, 025301 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.025301
7.
7. G. I. Taylor, “The formation of emulsions in definable fields of flow,” Proc. R. Soc. London, Ser. A 146, 501523 (1934).
http://dx.doi.org/10.1098/rspa.1934.0169
8.
8. P. Welander,“Studies on the general development of motion in a two-dimensional, ideal fluid,” Tellus 7, 141156 (1955).
http://dx.doi.org/10.1111/j.2153-3490.1955.tb01147.x
9.
9. J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport (Cambridge University Press, Cambridge, 1989), p. 364.
10.
10. G. Haller, “Distinguished material surfaces and coherent structures in 3D fluid flows,” Physica D 149, 248277 (2001).
http://dx.doi.org/10.1016/S0167-2789(00)00199-8
11.
11. G. Haller, “A variational theory of hyperbolic Lagrangian coherent structures,” Physica D 240, 574598 (2011).
http://dx.doi.org/10.1016/j.physd.2010.11.010
12.
12. S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,” Physica D 212, 271304 (2005).
http://dx.doi.org/10.1016/j.physd.2005.10.007
13.
13. G. Haller, “An objective definition of a vortex,” J. Fluid Mech. 525, 126 (2005).
http://dx.doi.org/10.1017/S0022112004002526
14.
14. W. Tang and P. Walker, “Finite-time statistics of scalar diffusion in Lagrangian coherent structures,” Phys. Rev. E 86, 045201 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.045201
15.
15. I. Mezić, J. F. Brady, and S. Wiggins, “Maximal effective diffusivity for time-periodic incompressible fluid flows,” SIAM J. Appl. Math. 56(1), 4056 (1996).
http://dx.doi.org/10.1137/S0036139994270449
16.
16. M. Sandulescu, C. López, E. Hernández-García, and U. Feudel, “Plankton blooms in vortices: The role of biological and hydrodynamic time scales,” Nonlinear Processes Geophys. 14, 443454 (2007).
http://dx.doi.org/10.5194/npg-14-443-2007
17.
17. V. Artale, G. Boffetta, M. Celani, M. Cencini, and A. Vulpiani, “Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient,” Phys. Fluids 9, 31623171 (1997).
http://dx.doi.org/10.1063/1.869433
18.
18. A. Tzella and P. H. Haynes, “Smooth and filamental structures in chaotically advected chemical fields,” Phys. Rev. E 81, 016322 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.016322
19.
19. D. A. Birch, Y. K. Tsang, and W. R. Young, “Bounding biomass in the Fisher equation,” Phys. Rev. E 75, 066304 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.066304
20.
20. W. J. McKiver and Z. Neufeld, “Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity,” Phys. Rev. E 79, 061902 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061902
21.
21. D. Bargteila and T. Solomon, “Barriers to front propagation in ordered and disordered vortex flows,” Chaos 22, 037103 (2012).
http://dx.doi.org/10.1063/1.4746764
22.
22. K. A. Mitchell and J. R. Mahoney, “Invariant manifolds and the geometry of front propagation in fluid flows,” Chaos 22, 037104 (2012).
http://dx.doi.org/10.1063/1.4746039
23.
23. A. Brandenburg, N. E. L. Haugen, and N. Babkovskaia, “Turbulent front speed in the Fisher equation: Dependence on Damköhler number,” Phys. Rev. E 83, 016304 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.016304
24.
24. J. P. Crimaldi, J. R. Cadwell, and J. B. Weiss, “Reaction enhancement of isolated scalars by vortex stirring,” Phys. Fluids 20, 073605 (2008).
http://dx.doi.org/10.1063/1.2963139
25.
25. T. Tél, A. de Moura, C. Grebogi, and G. Károlyi, “Chemical and biological activity in open flows: A dynamical system approach,” Phys. Rep. 413, 91196 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.01.005
26.
26. Z. Neufeld and E. Hernández-García, Chemical and Biological Activity in Open Flows: A Dynamical System Approach (Imperial College Press, London, 2009), p. 304.
27.
27. C. L. Winter, D. M. Tartakovsky, and A. Guadagnini, “Numerical solutions of moment equations for flow in heterogeneous composite aquifers,” Water Resour. Res. 38(5), 131138, doi:10.1029/2001WR000222 (2002).
http://dx.doi.org/10.1029/2001WR000222
28.
28. C. L. Winter, D. M. Tartakovsky, and A. Guadagnini, “Moment differential equations for flow in highly heterogeneous porous media,” Surv. Geophys. 24(1), 81106 (2003).
http://dx.doi.org/10.1023/A:1022277418570
29.
29. C. L. Winter, A. Guadagnini, D. Nychka, and D. M. Tartakovsky, “Multivariate sensitivity analysis of saturated flow through simulated highly heterogeneous groundwater aquifers,” J. Comput. Phys. 217(1), 166175 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.01.047
30.
30. D. M. Tartakovsky, M. Dentz, and P. C. Lichtner, “Probability density functions for advective-reactive transport with uncertain reaction rates,” Water Resour. Res. 45, W07414, doi:10.1029/2008WR007383 (2009).
http://dx.doi.org/10.1029/2008WR007383
31.
31. M. Dentz and D. M. Tartakovsky, “Probability density functions for passive scalars dispersed in random velocity fields,” Geophys. Res. Lett. 37, L24406, doi:10.1029/2010GL045748 (2010).
http://dx.doi.org/10.1029/2010GL045748
32.
32. I. Mezić, S. Loire, V. A. Fonoberov, and P. Hogan, “A new mixing diagnostic and Gulf oil spill movement,” Science 330, 486489 (2010).
http://dx.doi.org/10.1126/science.1194607
33.
33. G. Haller and F. J. Beron-Vera, “Geodesic theory of transport barriers in two-dimensional flows,” Physica D 241, 16801702 (2012).
http://dx.doi.org/10.1016/j.physd.2012.06.012
34.
34. R. T. Pierrehumbert and H. Yang, “Global chaotic mixing on isentropic surfaces,” J. Atmos. Sci. 50, 24622480 (1993).
http://dx.doi.org/10.1175/1520-0469(1993)050<2462:GCMOIS>2.0.CO;2
35.
35. T. Peacock and J. Dabiri, “Introduction to focus issue: Lagrangian coherent structures,” Chaos 20, 017501 (2010).
http://dx.doi.org/10.1063/1.3278173
36.
36. F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, and J. Marsden, “Pollution release tied to invariant manifolds: A case study for the coast of Florida,” Physica D 210, 120 (2005).
http://dx.doi.org/10.1016/j.physd.2005.06.023
37.
37. S. C. Shadden, J. O. Dabiri, and J. E. Marsden, “Lagrangian analysis of fluid transport in empirical vortex ring flows,” Phys. Fluids 18(4), 047105 (2006).
http://dx.doi.org/10.1063/1.2189885
38.
38. W. Tang, M. Mathur, G. Haller, D. C. Hahn, and F. H. Ruggiero, “Lagrangian coherent structures near a subtropical jet stream,” J. Atmos. Sci. 67(7), 23072319 (2010).
http://dx.doi.org/10.1175/2010JAS3176.1
39.
39. J. Finn and D. del-Castillo-Negrete, “Lagrangian chaos and Eulerian chaos in shear flow dynamics,” Chaos 11(4), 816832 (2001).
http://dx.doi.org/10.1063/1.1418762
40.
40. T. Peacock and G. Haller, “Lagrangian coherent structures: The hidden skeleton of fluid flows,” Phys. Today 66(2), 4147 (2013).
http://dx.doi.org/10.1063/PT.3.1886
41.
41. M. Farazmand and G. Haller, “Computing Lagrangian coherent structures from variational LCS theory,” Chaos 22, 013128 (2012).
http://dx.doi.org/10.1063/1.3690153
42.
42. T. H. Solomon and J. P. Gollub, “Passive transport in steady Rayleigh Bénard convection,” Phys. Fluids 31, 13721379 (1988).
http://dx.doi.org/10.1063/1.866729
43.
43. W. R. Young, A. Pumir, and Y. Pomeau, “Anomalous diffusion of tracer in convection rolls,” Phys. Fluids A 1, 462469 (1989).
http://dx.doi.org/10.1063/1.857415
44.
44. F. Lekien and S. D. Ross, “The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds,” Chaos 20, 017505 (2010).
http://dx.doi.org/10.1063/1.3278516
45.
45. R. A. Fisher, “The wave of advance of advantageous genes,” Annu. Eugen. 7, 355369 (1937).
http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x
46.
46. A. Kolmogorov, I. Petrovskii, and N. Piscounov, “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,” in Selected Works of A. N. Kolmogorov I (Kluwer, 1991), pp. 248270, edited by V. M. Tikhomirov
46.[translated by V. M. Volosov, Bull. Moscow Univ., Math. Mech. 1, 125 (1937)].
http://dx.doi.org/10.1007/978-94-011-3030-1_38
47.
47. P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence research,” Annu. Rev. Fluid Mech. 30, 539578 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.539
48.
48. J. R. Taylor, “Numerical simulations of the stratified oceanic bottom boundary layer,” Ph.D. thesis (University of California, San Diego, 2008).
49.
49. E. Ott and T. M. Antonsen, Jr., “Chaotic fluid convection and the fractal nature of passive scalar gradients,” Phys. Rev. Lett. 61(25), 28392842 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2839
50.
50. E. Ott and T. M. Antonsen, Jr., “Fractal measures of passively convected vector fields and scalar gradients in chaotic fluid flows,” Phys. Rev. A 39(7), 36603671 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3660
51.
51. A. Mahadevan and J. W. Campbell, “Biogeochemical patchiness at the sea surface,” Geophys. Res. Lett. 29(19), 1926, doi:10.1029/2001GL014116 (2002).
http://dx.doi.org/10.1029/2001GL014116
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4823991
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4823991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4823991
2013-10-15
2014-07-28

Abstract

A study on an advection-diffusion-reaction system is presented. Variability of the reaction process in such a system triggered by a highly localized source is quantified. It is found, for geophysically motivated parameter regimes, that the difference in bulk concentration subject to realizations of different source locations is highly correlated with the local flow topology of the source. Such flow topologies can be highlighted by Lagrangian coherent structures. Reaction is relatively enhanced in regions of strong stretching, and relatively suppressed in regions where vortices are present. In any case, the presence of a divergence-free background flow helps speed up the reaction process, especially when the flow is time-dependent. Probability density of various quantities characterizing the reaction processes is also obtained. This reveals the inherent complexity of the reaction-diffusion process subject to nonlinear background stirring.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4823991.html;jsessionid=abd4r0nho9fbs.x-aip-live-02?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4823991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dependence of advection-diffusion-reaction on flow coherent structures
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4823991
10.1063/1.4823991
SEARCH_EXPAND_ITEM