1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Inertial coalescence of droplets on a partially wetting substrate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4824108
1.
1. J. Frenkel, “Viscous flow of crystalline bodies under the action of surface tension,” J. Phys. (Moscow) 9, 385 (1945).
2.
2. V. S. Nikolayev, D. Beysens, and P. Guenoun, “New hydrodynamic mechanism for drop coarsening,” Phys. Rev. Lett. 76, 3144 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3144
3.
3. S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst. 12, 7080 (2003).
http://dx.doi.org/10.1109/JMEMS.2002.807467
4.
4. W. D. Ristenpart, P. M. McCalla, R. V. Roy, and H. A. Stone, “Coalescence of spreading droplets on a wettable substrate,” Phys. Rev. Lett. 97, 064501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.064501
5.
5. R. Narhe, D. Beysens, and Y. Pomeau, “Dynamic drying in the early-stage coalescence of droplets sitting on a plate,” Europhys. Lett. 81, 46002 (2008).
http://dx.doi.org/10.1209/0295-5075/81/46002
6.
6. M. W. Lee, D. K. Kang, S. S. Yoon, and A. L. Yarin, “Coalescence of two drops on partially wettable substrates,” Langmuir 28, 37913798 (2012).
http://dx.doi.org/10.1021/la204867c
7.
7. N. Kapur and P. H. Gaskell, “Morphology and dynamics of droplet coalescence on a surface,” Phys. Rev. E 75, 056315 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056315
8.
8. J. F. Hernández-Sánchez, L. A. Lubbers, A. Eddi, and J. H. Snoeijer, “Symmetric and asymmetric coalescence of drops on a substrate,” Phys. Rev. Lett. 109, 184502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.184502
9.
9. J. Eggers, J. R. Lister, and H. A. Stone, “Coalescence of liquid drops,” J. Fluid Mech. 401, 293310 (1999).
http://dx.doi.org/10.1017/S002211209900662X
10.
10. Y. Sui, H. Ding, and P. D. M. Spelt, “Numerical simulations of flows with moving contact lines,” Annu. Rev. Fluid Mech. 46, 97119 (2014).
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
11.
11. H. Ding, P. D. M. Spelt, and C. Shu, “Diffuse interface model for incompressible two-phase flows with large density ratios,” J. Comput. Phys. 226, 20782095 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.06.028
12.
12. H. Ding and P. D. M. Spelt, “Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers,” J. Fluid Mech. 599, 341362 (2008).
http://dx.doi.org/10.1017/S0022112008000190
13.
13. Y. Sui and P. D. M. Spelt, “Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation,” J. Fluid Mech. 715, 283313 (2013).
http://dx.doi.org/10.1017/jfm.2012.518
14.
14. Y. Sui and P. D. M. Spelt, “An efficient computational model for macroscale simulations of moving contact lines,” J. Comput. Phys. 242, 3752 (2013).
http://dx.doi.org/10.1016/j.jcp.2013.02.005
15.
15. J.-B. Dupont and D. Legendre, “Numerical simulation of static and sliding drop with contact angle hysteresis,” J. Comput. Phys. 229, 24532478 (2010).
http://dx.doi.org/10.1016/j.jcp.2009.07.034
16.
16. D. Legendre and M. Maglio, “Numerical simulation of spreading drops,” Colloids Surf., A 432, 2937 (2013).
http://dx.doi.org/10.1016/j.colsurfa.2013.04.046
17.
17. L. H. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D 12, 14731484 (1979).
http://dx.doi.org/10.1088/0022-3727/12/9/009
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824108
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4824108
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4824108
2013-10-01
2014-12-26

Abstract

We consider the growth rate of the height of the connecting bridge in rapid surface-tension-driven coalescence of two identical droplets attached on a partially wetting substrate. For a wide range of contact angle values, the height of the bridge grows with time following a power law with a universal exponent of 2/3, up to a threshold time, beyond which a 1/2 exponent results, that is known for coalescence of freely-suspended droplets. In a narrow range of contact angle values close to 90°, this threshold time rapidly vanishes and a 1/2 exponent results for a 90° contact angle. The argument is confirmed by three-dimensional numerical simulations based on a diffuse interface method with adaptive mesh refinement and a volume-of-fluid method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4824108.html;jsessionid=qauwm2x250u6.x-aip-live-02?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4824108&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inertial coalescence of droplets on a partially wetting substrate
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824108
10.1063/1.4824108
SEARCH_EXPAND_ITEM