1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Evolution of a hairpin vortex in a shear-thinning fluid governed by a power-law model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4824457
1.
1. J. Mewis, “Thixotropy: A general review,” Non-Newtonian Fluid Mech. 6, 120 (1979).
http://dx.doi.org/10.1016/0377-0257(79)87001-9
2.
2. G. Verreet and J. Berlamont, “Rheology and non-Newtonian behavior of sea and estuarine mud,” Encylopedia of Fluid Mechanics, Rheology and Non-Newtonian Flows, edited by N. P. Cheremisinoff (Gulf Publishing Company, Houston, 1988), Vol. 7, p. 135.
3.
3. A. M. Dickie and J. L. Kokini, “An improved model for food thickness from non-Newtonian fluid mechanics in the mouth,” J. Food Sci. 48, 5761 (1983).
http://dx.doi.org/10.1111/j.1365-2621.1983.tb14787.x
4.
4. R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow in the Process Industries (Butterworth-Heinemann, Oxford, 1999).
5.
5. C. A. Hieber and S. F. Shen, “A finite-element/finite difference simulation of the injection-molding filling process,” J. Non-Newtonian Fluid Mech. 7, 132 (1980).
http://dx.doi.org/10.1016/0377-0257(80)85012-9
6.
6. C. U. Ikoku and H. J. Ramey, Jr., “Transient flow of non-Newtonian power-law fluids in porous media,” Soc. Pet. Eng. J. 19, 164174 (1979).
http://dx.doi.org/10.2118/7139-PA
7.
7. B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: Steady state simulations,” J. Biomech. 37, 709720 (2004).
http://dx.doi.org/10.1016/j.jbiomech.2003.09.016
8.
8. K. K. Raju and R. Devanathan, “Perastaltic motion of a non-Newtonian fluid,” Rheol. Acta 11, 170178 (1972).
http://dx.doi.org/10.1007/BF01993016
9.
9. L. M. Srivastava and V. P. Srivastava, “Peristalic transport of a non-Newtonian fluid: Applications to the vas deferens and small intestine,” Ann. Biomed. Eng. 13, 137153 (1985).
http://dx.doi.org/10.1007/BF02584235
10.
10. R. W. Veatch, Jr., “Overview of current hydraulic fracturing design and treatment technology: Part 2,” J. Pet. Tech. 35, 853864 (1983).
http://dx.doi.org/10.2118/11922-PA
11.
11. P. Sinha, J. B. Shukla, K. R. Prasad, and C. Singh, “Non-Newtonian power law fluid lubrication of lightly loaded cylinders with normal and rolling motion,” Wear 89, 313322 (1983).
http://dx.doi.org/10.1016/0043-1648(83)90152-7
12.
12. R. C. Bhattacharjee and N. C. Das, “Power law fluid model incorporated into elastohydrodynamic lubrication theory,” Tribol. Int. 29, 405413 (1996).
http://dx.doi.org/10.1016/0301-679X(95)00096-M
13.
13. J. T. Park, R. J. Mannheimer, T. A. Grimley, and T. B. Morrow, “Pipe flow measurements of a transparent non-Newtonian slurry,” J. Fluids Eng. 111, 331336 (1989).
http://dx.doi.org/10.1115/1.3243648
14.
14. F. T. Pinho and J. H. Whitelaw, “Flow of Non-Newtonian fluids in a pipe,” J. Non-Newtonian Fluid Mech. 34, 129144 (1990).
http://dx.doi.org/10.1016/0377-0257(90)80015-R
15.
15. M. P. Escudier and F. Presti, “Pipe flow of a thixotropic liquid,” J. Non-Newtonian Fluid Mech. 62, 291306 (1996).
http://dx.doi.org/10.1016/0377-0257(96)01417-6
16.
16. M. Rudman, H. M. Blackburn, L. J. W. Graham, and L. Pullum, “Turbulent pipe flow of shear-thinning fluids,” J. Non-Newtonian Fluid Mech. 118, 3348 (2004).
http://dx.doi.org/10.1016/j.jnnfm.2004.02.006
17.
17. C. Nouar, A. Bottaro, and J. P. Brancher, “Delaying transition to turbulence in channel flow: Revisiting the stability of shear-thinning fluids,” J. Fluid Mech. 592, 177194 (2007).
http://dx.doi.org/10.1017/S0022112007008439
18.
18. T. Theodorsen, “Mechanism of turbulence,” in Proceedings of the Second Midwestern Conference of Fluid Mechanics (Ohio State University, Columbus, 1952), pp. 119.
19.
19. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, “The structure of turbulent boundary layers,” J. Fluid Mech. 30, 741773 (1967).
http://dx.doi.org/10.1017/S0022112067001740
20.
20. C. R. Smith and S. P. Metzler, “Characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer,” J. Fluid Mech. 129, 2754 (1983).
http://dx.doi.org/10.1017/S0022112083000634
21.
21. J. W. Brooke and T. J. Hanratty, “Origin of turbulence-producing eddies in a channel flow,” Phys. Fluids A 5, 10111022 (1993).
http://dx.doi.org/10.1063/1.858666
22.
22. P. S. Bernard, J. M. Thomas, and R. A. Handler, “Vortex dynamics and the production of Reynolds stress,” J. Fluid Mech. 253, 385419 (1993).
http://dx.doi.org/10.1017/S0022112093001843
23.
23. S. K. Robinson, “Coherent motions in the turbulent boundary layer,” Annu. Rev. Fluid Mech. 23, 601639 (1991).
http://dx.doi.org/10.1146/annurev.fl.23.010191.003125
24.
24. R. J. Adrian, “Hairpin vortex organization in wall turbulence,” Phys. Fluids 19, 041301 (2007).
http://dx.doi.org/10.1063/1.2717527
25.
25. J. S. Strand and D. B. Goldstein, “Direct numerical simulations of riblets to constrain the growth of turbulent spots,” J. Fluid Mech. 668, 267292 (2011).
http://dx.doi.org/10.1017/S0022112010005033
26.
26. J. L. Lumley, “Drag reduction by additives,” Annu. Rev. Fluid Mech. 1, 367384 (1969).
http://dx.doi.org/10.1146/annurev.fl.01.010169.002055
27.
27. J. L. Lumley, “Drag reduction in turbulent flow by polymer additives,” J. Polym. Sci. 7, 263290 (1973).
http://dx.doi.org/10.1002/pol.1973.230070104
28.
28. R. Sureshkumar, A. N. Beris, and R. A. Handler, “Direct numerical simulation of the turbulent channel flow of a polymer solution,” Phys. Fluids 9, 743755 (1997).
http://dx.doi.org/10.1063/1.869229
29.
29. K. Kim, R. J. Adrian, S. Balachandar, and R. Sureshkumar, “Dynamics of hairpin vortices and polymer-induced drag reduction,” Phys. Rev. Lett. 100, 134504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.134504
30.
30. K. Kim and R. Sureshkumar, “Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reducing turbulent channel flows,” Phys. Rev. E 87, 063002 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.063002
31.
31. R. I. Tanner, Engineering Rheology (Oxford University Press, Oxford, 1988).
32.
32. L. Rosenhead, Laminar Boundary Layers (Oxford University Press, Oxford, 1963)
33.
33. S. A. Orszag, “Accurate solution of the Orr-Sommerfeld stability equation,” J. Fluid. Mech. 50, 689703 (1971).
http://dx.doi.org/10.1017/S0022112071002842
34.
34. J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 6994 (1995).
http://dx.doi.org/10.1017/S0022112095000462
35.
35. G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953).
36.
36. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972).
37.
37. J. O. Hinze, Turbulence (McGraw-Hill, New York, 1975).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824457
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4824457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4824457
2013-10-10
2014-09-22

Abstract

The effect of a shear-thinning fluid governed by a power-law model on the evolution of a hairpin vortex in a wall-bounded flow was studied by means of direct numerical simulation. With a fixed Reynolds number and hairpin vortex strength, the effect of shear-thinning on vortex evolution could be isolated. The primary observation is that very early in time shear-thinning has the effect of reducing the production of vortex kinetic energy and dramatically increasing viscous dissipation. This leads to a delay in the transition of the flow to a turbulent state. Three-dimensional flow visualizations reveal that the increased dissipation is associated with an instability in which the hairpin vortex is broken down into small-scale structures. It is suggested that the finite amplitude of the hairpin creates a lowering of viscosity near the hairpin vortex core which leads to this instability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4824457.html;jsessionid=1k7249p1tvd27.x-aip-live-03?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4824457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evolution of a hairpin vortex in a shear-thinning fluid governed by a power-law model
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824457
10.1063/1.4824457
SEARCH_EXPAND_ITEM