Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” Eur. J. Mech. B/Fluids 22, 603634 (2003).
2. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schrödinger equation,” Teor. Matem. Fiz. (USSR) 72, 183196 (1987)
2.N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor. Math. Phys. 72, 809818 (1988) (in English).
3. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Austral. Math. Soc. Ser. B 25, 1643 (1983).
4. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Heidelberg, NY, 2009).
5. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790795 (2010).
6. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106, 204502 (2011).
7. H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
8. A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, “Super rogue waves: Observation of a higher-order breather in water waves,” Phys. Rev. X 2, 011015 (2012).
9. T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. Part 1,” Theory. J. Fluid Mech. 27, 417430 (1967).
10. A. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Elsevier, Amsterdam, 2010).
11. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchie, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 4789 (2013).
12. M. Onorato, D. Proment, G. Clauss, and M. Klein, “Rogue waves: From nonlinear Schrödinger breather solutions to sea-keeping test,” PLoS ONE 8(2), e54629 (2013).
13. I. E. Alber, “The effects of randomness on the stability of two-dimensional surface wavetrains,” Proc. R. Soc. London A 363, 525546 (1978).
14. D. R. Crawford, P. G. Saffman, and H. C. Yuen, “Evolution of random inhomogeneous field of nonlinear deep-water gravity waves,” Wave Motion 2, 116 (1980).
15. L. F. Bliven, N. E. Huang, and S. R. Long, “Experimental study of the influence of wind on Benjamin-Feir sideband instability,” J. Fluid Mech. 162, 237260 (1986).
16. J. C. Li, W. H. Hui, and M. A. Donelan, “Effects of velocity shear on the stability of surface deep water wave trains,” in Nonlinear Water Waves, edited by K. Horikawa and H. Maruo (Springer, Berlin, 1987), pp. 213220.
17. T. Hara and C. C. Mei, “Frequency downshift in narrowbanded surface waves under the influence of wind,” J. Fluid Mech. 230, 429477 (1991).
18. K. Trulsen and K. B. Dysthe, “Action of windstress and breaking on the evolution of a wavetrain,” in Breaking Waves, edited by M. L. Banner and R. H. J. Grimshaw (Springer-Verlag, Berlin, 1992), pp. 243249.
19. A. Galchenko, A. V. Babanin, D. Chalikov, I. R. Young, and B. K. Haus, “Influence of wind forcing on modulation and breaking of one-dimensional deep-water wave groups,” J. Phys. Oceanogr. 42, 928939 (2012).
20. T. Waseda and M. P. Tulin, “Experimental study of the stability of deep-water wave trains including wind effects,” J. Fluid Mech. 401, 5584 (1999).
21. J. Touboul and C. Kharif, “On the interaction of wind and extreme gravity waves due to modulational instability,” Phys. Fluids 18, 108103 (2006).
22. C. Kharif, J. P. Giovanangel, J. Touboul, L. Grare, and E. Pelinovsky, “Influence of wind on extreme wave events: Experimental and numerical approaches,” J. Fluid Mech. 594, 209247 (2008).
23. C. Kharif, R. Kraenkel, M. Manna, and R. Thomas, “Modulational instability in deep water under the action of wind and dissipation,” J. Fluid Mech. 664, 138149 (2010).
24. C. Kharif and J. Touboul, “Under which conditions the Benjamin-Feir instability may spawn an extreme wave event: A fully nonlinear approach,” Eur. Phys. J. Spec. Top. 185, 159168 (2010).
25. J. Touboul and C. Kharif, “Nonlinear evolution of the modulational instability under weak forcing and dissipation,” Nat. Hazards Earth Syst. Sci. 10, 25892597 (2010).
26. R. S. Johnson, “On the modulation of water waves on shear flows,” Proc. R. Soc. London A 347, 537546 (1976).
27. M. Oikawa, K. Chow, and D. J. Benney, “The propagation of nonlinear wave packets in a shear flow with a free surface,” Stud. Appl. Math. 76, 6992 (1987).
28. A. I. Baumstein, “Modulation of gravity waves with shear in water,” Stud. Appl. Math. 100, 365390 (1998).
29. W. Choi, “Nonlinear surface waves interacting with a linear shear current,” Math. Comput. Simul. 80, 101110 (2009).
30. M. Okamura and M. Oikawa, “The linear stability of finite amplitude surface waves on a linear shearing flow,” J. Phys. Soc. Jpn. 58, 23862396 (1989).
31. R. Thomas, C. Kharif, and M. Manna, “A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity,” Phys. Fluids 24, 127102 (2012).
32. V. E. Zakharov, “Stability of periodic waves of finite amplitude on a surface of deep fluid,” J. Appl. Mech. Tech. Phys. 9, 190194 (1968).
33. M. Coantic, A. Ramamonijiarisoa, P. Mestayer, F. Resch, and A. Favre, “Wind-water tunnel simulation of small-scale ocean-atmosphere interactions,” J. Geo. Phys. 86, 66076626 (1981).
34. A. Iafrati, A. Babanin, and M. Onorato, “Modulational instability, wave breaking, and formation of large-scale dipoles in the atmosphere,” Phys. Rev. Lett. 110, 184504 (2013).
35. M. Onorato and D. Porment, “Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves,” Phys. Lett. A 376(45), 30573059 (2012).
36. M. A. Donelan, A. V. Babanin, I. R. Young, and M. L. Banner, “Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input,” J. Phys. Oceanogr. 36, 16721689 (2006).
37. A. V. Babanin, D. Chalikov, I. R. Young, and I. Savelyev, “Predicting the breaking onset of surface water waves,” Geophys. Res. Lett. 34, L07605, doi:10.1029/2006GL029135 (2007).
38. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and J. M. Dudley, “Rogue wave early warning through spectral measurements?,” Phys. Lett. A 375, 541544 (2011).
39. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Spectral properties of the Peregrine soliton observed in a water wave tank,” J. Geophys. Res. 117, C00J03, doi:10.1029/2011JC007671 (2012).
40. N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, and N. Devine, “Early detection of rogue waves in a chaotic wave field,” Phys. Lett. A 375, 29993001 (2011).

Data & Media loading...


Article metrics loading...



Being considered as a prototype for description of oceanic rogue waves, the Peregrine breather solution of the nonlinear Schrödinger equation has been recently observed and intensely investigated experimentally in particular within the context of water waves. Here, we report the experimental results showing the evolution of the Peregrine solution in the presence of wind forcing in the direction of wave propagation. The results show the persistence of the breather evolution dynamics even in the presence of strong wind and chaotic wave field generated by it. Furthermore, we have shown that characteristic spectrum of the Peregrine breather persists even at the highest values of the generated wind velocities thus making it a viable characteristic for prediction of rogue waves.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd