1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Near-wall turbulence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4824988
1.
1. A. A. Townsend, “Equilibrium layers and wall turbulence,” J. Fluid Mech. 11, 97120 (1961).
http://dx.doi.org/10.1017/S0022112061000883
2.
2. L. F. Richardson, “The supply of energy from and to atmospheric eddies,” Proc. R. Soc. London, Ser. A 97, 354373 (1920).
http://dx.doi.org/10.1098/rspa.1920.0039
3.
3. O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philos. Trans. R. Soc. London 186, 123164 (1895).
http://dx.doi.org/10.1098/rsta.1895.0004
4.
4. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 301305 (1941),
4.A. N. Kolmogorov, reprinted in Proc. R. Soc. London, Ser. A 434, 913 (1991).
http://dx.doi.org/10.1098/rspa.1991.0075
5.
5. A. M. Obukhov, “On the distribution of energy in the spectrum of turbulent flow,” Dokl. Akad. Nauk SSSR 32, 2224 (1941).
6.
6. G. L. Brown and A. Roshko, “On the density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775816 (1974).
http://dx.doi.org/10.1017/S002211207400190X
7.
7. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, “Structure of turbulent boundary layers,” J. Fluid Mech. 30, 741773 (1967).
http://dx.doi.org/10.1017/S0022112067001740
8.
8. E. R. Corino and R. S. Brodkey, “A visual investigation of the wall region in turbulent flow,” J. Fluid Mech. 37, 130 (1969).
http://dx.doi.org/10.1017/S0022112069000395
9.
9. E. Perlman, R. Burns, Y. Li, and C. Meneveau, “Data exploration of turbulence simulations using a database cluster,” in Proceedings of the ACM/IEEE Supercomputing Conference 07 (ACM, New York, 2007), pp. 2312311.
10.
10. A. Lozano-Durán and J. Jiménez, “Time-resolved evolution of the wall-bounded vorticity cascade,” J. Phys.: Conf. Ser. 318, 062016 (2011).
http://dx.doi.org/10.1088/1742-6596/318/6/062016
11.
11. J. A. LeHew, M. Guala, and B. J. McKeon, “Time-resolved measurements of coherent structures in the turbulent boundary layer,” Exp. Fluids 54, 1508 (2013).
http://dx.doi.org/10.1007/s00348-013-1508-4
12.
12. J. Jiménez and A. Pinelli, “The autonomous cycle of near wall turbulence,” J. Fluid Mech. 389, 335359 (1999).
http://dx.doi.org/10.1017/S0022112099005066
13.
13. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, 1972).
14.
14. L. Keefe, P. Moin, and J. Kim, “The dimension of attractors underlying periodic turbulent poiseuille flow,” J. Fluid Mech. 242, 129 (1992).
http://dx.doi.org/10.1017/S0022112092002258
15.
15. R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd ed. (SIAM, 1995).
16.
16. R. H. Kraichnan, “Inertial range transfer in two- and three-dimensional turbulence,” J. Fluid Mech. 47, 525535 (1971).
http://dx.doi.org/10.1017/S0022112071001216
17.
17. M. Lesieur, Turbulence in Fluids, 4th ed. (Springer, 2008), Chap. 10.
18.
18. G. Kawahara, “Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence,” Phys. Fluids 17, 041702 (2005).
http://dx.doi.org/10.1063/1.1890428
19.
19. G. H. L. Hagen, “Über den Bewegung des Wassers in engen cylindrischen Röhren,” Pogg. Ann. Phys. Chem. 46, 423442 (1839).
20.
20. H. Darcy, “Recherches expérimentales rélatives au mouvement de l'eau dans les tuyeaux,” Mém. Savants Etrang. Acad. Sci. Paris 17, 1268 (1854).
21.
21. International Energy Agency, Key World Energy Statistics (IEA, Paris, 2012), available from http://www.iea.org/publications/freepublications/publication/kwes.pdf.
22.
22. R. J. Adrian, “Hairpin vortex organization in wall turbulence,” Phys. Fluids 19, 041301 (2007).
http://dx.doi.org/10.1063/1.2717527
23.
23. A. J. Smits, B. J. McKeon, and I. Marusic, “High-Reynolds number wall turbulence,” Annu. Rev. Fluid Mech. 43, 353375 (2011).
http://dx.doi.org/10.1146/annurev-fluid-122109-160753
24.
24. J. Jiménez, “Cascades in wall-bounded turbulence,” Annu. Rev. Fluid Mech. 44, 2745 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101039
25.
25. G. Kawahara, M. Uhlmann, and L. van Veen, “The significance of simple invariant solutions in turbulent flows,” Annu. Rev. Fluid Mech. 44, 203225 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101228
26.
26. I. Marusic, and R. J. Adrian, “The eddies and scales of wall turbulence,” in Ten Chapters in Turbulence, edited by P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan (Cambridge University Press, 2013), pp. 176220.
27.
27. J. Jiménez and G. Kawahara, “Dynamics of wall-bounded turbulence,” in Ten Chapters in Turbulence, edited by P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan (Cambridge University Press, 2013), pp. 221268.
28.
28. J. Kim, P. Moin, and R. D. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133166 (1987).
http://dx.doi.org/10.1017/S0022112087000892
29.
29. E. D. Siggia, “Numerical study of small scale intermittency in three-dimensional turbulence,” J. Fluid Mech. 107, 375406 (1981).
http://dx.doi.org/10.1017/S002211208100181X
30.
30. R. S. Rogallo, “Numerical experiments in homogeneous turbulence,” Technical Memo 81315 (NASA, 1981).
31.
31. J. C. del Álamo, J. Jiménez, P. Zandonade, and R. D. Moser, “Scaling of the energy spectra of turbulent channels,” J. Fluid Mech. 500, 135144 (2004).
http://dx.doi.org/10.1017/S002211200300733X
32.
32. H. Abe, H. Kawamura, and Y. Matsuo, “Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1020 with Pr = 0.025 and 0.71,” Int. J. Heat Fluid Flow 25, 404419 (2004).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.02.010
33.
33. S. Hoyas and J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,” Phys. Fluids 18, 011702 (2006).
http://dx.doi.org/10.1063/1.2162185
34.
34. J.-H. Lee and H. J. Sung, “Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall,” J. Fluid Mech. 584, 125146 (2007).
http://dx.doi.org/10.1017/S0022112007006465
35.
35. J.-H. Lee and H. J. Sung, “Very-large-scale motions in a turbulent boundary layer,” J. Fluid Mech. 673, 80120 (2011).
http://dx.doi.org/10.1017/S002211201000621X
36.
36. J. Jiménez, S. Hoyas, M. P. Simens, and Y. Mizuno, “Turbulent boundary layers and channels at moderate Reynolds numbers,” J. Fluid Mech. 657, 335360 (2010).
http://dx.doi.org/10.1017/S0022112010001370
37.
37. X. Wu and P. Moin, “Transitional and turbulent boundary layer with heat transfer,” Phys. Fluids 22, 085105 (2010).
http://dx.doi.org/10.1063/1.3475816
38.
38. P. Schlatter, R. Örlü, Q. Li, J. H. M. Fransson, A. V. Johansson, P. H. Alfredsson, and D. S. Henningson, “Turbulent boundary layers up to Reθ = 2500 through simulation and experiments,” Phys. Fluids 21, 051702 (2009).
http://dx.doi.org/10.1063/1.3139294
39.
39. P. Schlatter and R. Örlü, “Assessment of direct numerical simulation data of turbulent boundary layers,” J. Fluid Mech. 659, 116126 (2010).
http://dx.doi.org/10.1017/S0022112010003113
40.
40. J. A. Sillero, G. Borrell, A. G. Gungor, J. Jiménez, R. Moser, and T. A. Oliver, “Direct simulation of the zero-pressure-gradient boundary layer up to Reθ = 6000,” Bull. Am. Phys. Soc. 55(16), EB4 (2010).
41.
41. X. Wu and P. Moin, “A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow,” J. Fluid Mech. 608, 81112 (2008).
http://dx.doi.org/10.1017/S0022112008002085
42.
42. B. J. Boersma, “Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000,” J. Phys.: Conf. Ser. 318, 042045 (2011).
http://dx.doi.org/10.1088/1742-6596/318/4/042045
43.
43. J.-H. Lee and H. J. Sung, “Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations,” Phys. Fluids 25, 045103 (2013).
http://dx.doi.org/10.1063/1.4802048
44.
44.A. Lozano-Durán, private communication (2012).
45.
45. S. Pirozzoli and M. Bernardini, “Probing high-Reynolds-number effects in numerical boundary layers,” Phys. Fluids 25, 021704 (2013).
http://dx.doi.org/10.1063/1.4792164
46.
46. J. Jiménez, “Computing high-Reynolds number flows: will simulations ever substitute experiments?J. Turbul. 4, N22 (2003).
http://dx.doi.org/10.1088/1468-5248/4/1/022
47.
47. S. G. Saddoughi and S. V. Veeravali, “Local isotropy in turbulent boundary layers at high Reynolds numbers,” J. Fluid Mech. 268, 333372 (1994).
http://dx.doi.org/10.1017/S0022112094001370
48.
48. J. M. Österlund, A. V. Johansson, H. M. Nagib, and M. Hites, “A note on the overlap region in turbulent boundary layers,” Phys. Fluids 12, 14 (2000).
http://dx.doi.org/10.1063/1.870250
49.
49. C. B. Millikan, “A critical discussion of turbulent flows in channels and circular tubes,” in Proceedings of the 5th International Conference on Applied Mechanics (Wiley, 1938), pp. 386392.
50.
50. M. van Dyke, Perturbation Methods in Fluid Mechanics, 2nd ed. (The Parabolic Press, Stanford, 1975).
51.
51. N. Afzal and K. Yajnik, “Analysis of turbulent pipe and channel flows at moderately large Reynolds number,” J. Fluid Mech. 61, 23 (1973).
http://dx.doi.org/10.1017/S0022112073000546
52.
52. J. Jiménez and R. D. Moser, “What are we learning from simulating wall turbulence?Philos. Trans. R. Soc. A 365, 715 (2007).
http://dx.doi.org/10.1098/rsta.2006.1943
53.
53. M. V. Zagarola and A. J. Smits, “Scaling of the mean velocity profile for turbulent pipe shear flows,” Phys. Rev. Lett. 78, 239242 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.239
54.
54. G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, 1953).
55.
55. A. Pumir, “Turbulence in homogeneous shear flows,” Phys. Fluids 8, 31123127 (1996).
http://dx.doi.org/10.1063/1.869100
56.
56. S. Dong, A. Sekimoto, and J. Jiménez, “The effect of aspect ratio on statistically-stationary homogeneous shear flow,” Bull. Am. Phys. Soc. 57(17), D217 (2012).
57.
57. S. Corrsin, “Local isotropy in turbulent shear flow,” Research Memo 58B11 (NACA, 1958).
58.
58. J. Jiménez, “How linear is wall-bounded turbulence?Phys. Fluids 25, 110814 (2013).
http://dx.doi.org/10.1063/1.4819081
59.
59. M. J. Lee, J. Kim, and P. Moin, “Structure of turbulence at high shear rates,” J. Fluid Mech. 216, 561583 (1990).
http://dx.doi.org/10.1017/S0022112090000532
60.
60. J. L. Lumley, “Computational models of turbulent flows,” Adv. Appl. Mech. 18, 123176 (1979).
http://dx.doi.org/10.1016/S0065-2156(08)70266-7
61.
61. S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).
62.
62. M. M. Rogers and P. Moin, “The structure of the vorticity field in homogeneous turbulent flows,” J. Fluid Mech. 176, 3366 (1987).
http://dx.doi.org/10.1017/S0022112087000569
63.
63. S. Kida and M. Tanaka, “Dynamics of vortical structures in a homogeneous shear flow,” J. Fluid Mech. 274, 4368 (1994).
http://dx.doi.org/10.1017/S002211209400203X
64.
64. J. L. Lumley, “Similarity and the turbulent energy spectrum,” Phys. Fluids 10, 855858 (1967).
http://dx.doi.org/10.1063/1.1762200
65.
65. T. Ishihara, K. Yoshida, and Y. Kaneda, “Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear layer,” Phys. Rev. Lett. 88, 154501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.154501
66.
66. C. R. Smith and S. P. Metzler, “The characteristics of low speed streaks in the near wall region of a turbulent boundary layer,” J. Fluid Mech. 129, 2754 (1983).
http://dx.doi.org/10.1017/S0022112083000634
67.
67. J. C. Klewicki, M. M. Metzger, E. Kelner, and E. M. Thurlow, “Viscous sublayer flow visualizations at Rθ ≈ 1, 500, 000,” Phys. Fluids 7, 857863 (1995).
http://dx.doi.org/10.1063/1.868763
68.
68. G. J. Kunkel and I. Marusic, “Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using atmospheric data,” J. Fluid Mech. 548, 375402 (2006).
http://dx.doi.org/10.1017/S0022112005007780
69.
69. P. Moin and R. D. Moser, “Characteristic-eddy decomposition of turbulence in a channel,” J. Fluid Mech. 200, 471509 (1989).
http://dx.doi.org/10.1017/S0022112089000741
70.
70. J. Jiménez, J. C. del Álamo, and O. Flores, “The large-scale dynamics of near-wall turbulence,” J. Fluid Mech. 505, 179199 (2004).
http://dx.doi.org/10.1017/S0022112004008389
71.
71. W. Schoppa and F. Hussain, “Coherent structure generation in near-wall turbulence,” J. Fluid Mech. 453, 57108 (2002).
http://dx.doi.org/10.1017/S002211200100667X
72.
72. N. Hutchins and I. Marusic, “Evidence of very long meandering features in the logarithmic region of turbulent boundary layers,” J. Fluid Mech. 579, 128 (2007).
http://dx.doi.org/10.1017/S0022112006003946
73.
73. D. B. de Graaff and J. K. Eaton, “Reynolds number scaling of the flat-plate turbulent boundary layer,” J. Fluid Mech. 422, 319346 (2000).
http://dx.doi.org/10.1017/S0022112000001713
74.
74. M. Metzger and J. Klewicki, “A comparative study of near-wall turbulence in high and low Reynolds number boundary layers,” Phys. Fluids 13, 692701 (2001).
http://dx.doi.org/10.1063/1.1344894
75.
75. M. Metzger, J. Klewicki, K. Bradshaw, and R. Sadr, “Scaling of near-wall axial turbulent stress in the zero pressure gradient boundary layer,” Phys. Fluids 13, 18191821 (2001).
http://dx.doi.org/10.1063/1.1368852
76.
76. I. Marusic and G. J. Kunkel, “Streamwise turbulence intensity formulation for flat-plate boundary layers,” Phys. Fluids 15, 24612464 (2003).
http://dx.doi.org/10.1063/1.1589014
77.
77. H. C. H. Ng, J. P. Monty, N. Hutchins, M. S. Chong, and I. Marusic, “Comparison of turbulent channel and pipe flows with varying Reynolds number,” Exp. Fluids 51, 12611281 (2011).
http://dx.doi.org/10.1007/s00348-011-1143-x
78.
78. J. A. Sillero, J. Jiménez, and R. D. Moser, “One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000,” Phys. Fluids 25, 105102 (2013).
http://dx.doi.org/10.1063/1.4823831
79.
79. J. Jiménez and S. Hoyas, “Turbulent fluctuations above the buffer layer of wall-bounded flows,” J. Fluid Mech. 611, 215236 (2008).
http://dx.doi.org/10.1017/S0022112008002747
80.
80. J. P. Monty, N. Hutchins, H. C. H. Ng, I. Marusic, and M. S. Chong, “A comparison of turbulent pipe, channel and boundary layer flows,” J. Fluid Mech. 632, 431442 (2009).
http://dx.doi.org/10.1017/S0022112009007423
81.
81. J. A. Sillero, J. Jiménez, and R. Moser, “Two-point correlations for zero-pressure-gradient turbulent boundary layers and channels at Reτ = 1000 − 2000,” Bull. Am. Phys. Soc. 57(17), D207 (2012).
82.
82. R. Mathis, N. Hutchins, and I. Marusic, “Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers,” J. Fluid Mech. 628, 311337 (2009).
http://dx.doi.org/10.1017/S0022112009006946
83.
83. J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” J. Fluid Mech. 41, 453480 (1970).
http://dx.doi.org/10.1017/S0022112070000691
84.
84. U. Schumann, “Subgrid-scale model for finite difference simulation of turbulent flows in plane channels and annuli,” J. Comput. Phys. 18, 376404 (1975).
http://dx.doi.org/10.1016/0021-9991(75)90093-5
85.
85. U. Piomelli, “Wall-layer models for large-eddy simulations,” Prog. Aerosp. Sci. 44, 437446 (2008).
http://dx.doi.org/10.1016/j.paerosci.2008.06.001
86.
86. A. E. Perry and C. J. Abell, “Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes,” J. Fluid Mech. 79, 785799 (1977).
http://dx.doi.org/10.1017/S0022112077000457
87.
87. A. E. Perry, S. M. Henbest, and M. S. Chong, “A theoretical and experimental study of wall turbulence,” J. Fluid Mech. 165, 163199 (1986).
http://dx.doi.org/10.1017/S002211208600304X
88.
88. A. A. Townsend, The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, 1976), Chap. 3.12.
89.
89. P. Bradshaw, “Inactive motions and pressure fluctuations in turbulent boundary layers,” J. Fluid Mech. 30, 241258 (1967).
http://dx.doi.org/10.1017/S0022112067001417
90.
90. F. Tuerke and J. Jiménez, “Simulations of turbulent channels with prescribed velocity profiles,” J. Fluid Mech. 723, 587603 (2013).
http://dx.doi.org/10.1017/jfm.2013.143
91.
91. A. E. Perry and M. S. Chong, “On the mechanism of wall turbulence,” J. Fluid Mech. 119, 173217 (1982).
http://dx.doi.org/10.1017/S0022112082001311
92.
92. M. Hultmark, M. Vallikivi, S. C. C. Bailey, and A. J. Smits, “Turbulent pipe flow at extreme Reynolds numbers,” Phys. Rev. Lett. 108, 094501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.094501
93.
93. I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, “On the logarithmic region in wall turbulence,” J. Fluid Mech. 716, R3 (2013).
http://dx.doi.org/10.1017/jfm.2012.511
94.
94. J. A. Sillero, J. Jiménez, R. D. Moser, and N. P. Malaya, “Direct simulation of a zero-pressure-gradient turbulent boundary layer up to Reθ = 6650,” J. Phys.: Conf. Ser. 318, 022023 (2011).
http://dx.doi.org/10.1088/1742-6596/318/2/022023
95.
95. J. C. del Álamo, J. Jiménez, P. Zandonade, and R. D. Moser, “Self-similar vortex clusters in the logarithmic region,” J. Fluid Mech. 561, 329358 (2006).
http://dx.doi.org/10.1017/S0022112006000814
96.
96. M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395457 (1992).
http://dx.doi.org/10.1146/annurev.fl.24.010192.002143
97.
97. M. Farge, G. G. Pellegrino, and K. Schneider, “Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets,” Phys. Rev. Lett. 87, 054501 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.054501
98.
98. C. D. Winant and F. K. Browand, “Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number,” J. Fluid Mech. 63, 237255 (1974).
http://dx.doi.org/10.1017/S0022112074001121
99.
99. Z. She, E. Jackson, and S. A. Orszag, “Intermittent vortex structures in homogeneous isotropic turbulence,” Nature (London) 344, 226228 (1990).
http://dx.doi.org/10.1038/344226a0
100.
100. A. Vincent and M. Meneguzzi, “The spatial structure and statistical properties of homogeneous turbulence,” J. Fluid Mech. 225, 120 (1991).
http://dx.doi.org/10.1017/S0022112091001957
101.
101. J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255, 6590 (1993).
http://dx.doi.org/10.1017/S0022112093002393
102.
102. J. C. del Álamo and J. Jiménez, “Spectra of very large anisotropic scales in turbulent channels,” Phys. Fluids 15, L41L44 (2003).
http://dx.doi.org/10.1063/1.1570830
103.
103. A. Lozano-Durán, O. Flores, and J. Jiménez, “The three-dimensional structure of momentum transfer in turbulent channels,” J. Fluid Mech. 694, 100130 (2012).
http://dx.doi.org/10.1017/jfm.2011.524
104.
104. J. Jiménez and A. A. Wray, “On the characteristic of vortex filaments in isotropic turbulence,” J. Fluid Mech. 373, 255285 (1998).
http://dx.doi.org/10.1017/S0022112098002341
105.
105. J. Jiménez, F. Moisy, P. Tabeling, and H. Willaime, “Scaling and structure in isotropic turbulence,” in Intermittency in Turbulent Flows, edited by J. C. Vassilicos (Cambridge University Press, 2000), pp. 193212.
106.
106. M. Tanahashi, S. Iwase, and T. Miyauchi, “Appearance and alignment of strain rate of coherent fine scale eddies in turbulent mixing layer,” J. Turbul. 2, 117 (2001).
http://dx.doi.org/10.1088/1468-5248/2/1/006
107.
107. M. Tanahashi, S.-J. Kang, T. Miyamoto, S. Shiokawa, and T. Miyauchi, “Scaling law of fine scale eddies in turbulent channel flow at to Reτ = 800,” Int. J. Heat Fluid Flow 25, 331340 (2004).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.02.016
108.
108. F. Moisy and J. Jiménez, “Geometry and clustering of intense structures in isotropic turbulence,” J. Fluid Mech. 513, 111133 (2004).
http://dx.doi.org/10.1017/S0022112004009802
109.
109. O. Flores and J. Jiménez, “Effect of wall-boundary disturbances on turbulent channel flows,” J. Fluid Mech. 566, 357376 (2006).
http://dx.doi.org/10.1017/S0022112006001534
110.
110. J. M. Wallace, H. Eckelman, and R. S. Brodkey, “The wall region in turbulent shear flow,” J Fluid Mech. 54, 3948 (1972).
http://dx.doi.org/10.1017/S0022112072000515
111.
111. W. W. Willmarth and S. S. Lu, “Structure of the Reynolds stress near the wall,” J. Fluid Mech. 55, 6592 (1972).
http://dx.doi.org/10.1017/S002211207200165X
112.
112. S. S. Lu and W. W. Willmarth, “Measurements of the structure of the Reynolds stress in a turbulent boundary layer,” J. Fluid Mech. 60, 481511 (1973).
http://dx.doi.org/10.1017/S0022112073000315
113.
113. R. S. Brodkey, J. M. Wallace, and H. Eckelman, “Some properties of truncated turbulence signals in bounded shear flows,” J. Fluid Mech. 63, 209224 (1974).
http://dx.doi.org/10.1017/S0022112074001108
114.
114. D. G. Bogard and W. G. Tiederman, “Burst detection with single-point velocity measurements,” J. Fluid Mech. 162, 389413 (1986).
http://dx.doi.org/10.1017/S0022112086002094
115.
115. R. F. Blackwelder and R. E. Kaplan, “On the wall structure of the turbulent boundary layer,” J. Fluid Mech. 76, 89112 (1976).
http://dx.doi.org/10.1017/S0022112076003145
116.
116. J. Kim, “Turbulence structures associated with the bursting event,” Phys. Fluids 28, 5258 (1985).
http://dx.doi.org/10.1063/1.865401
117.
117. J. D. Swearingen and R. F. Blackwelder, “The growth and breakdown of streamwise vortices in the presence of a wall,” J. Fluid Mech. 182, 255290 (1987).
http://dx.doi.org/10.1017/S0022112087002337
118.
118. H. P. Bakewell and J. L. Lumley, “Viscous sublayer and adjacent wall region in turbulent pipe flow,” Phys. Fluids 10, 18801889 (1967).
http://dx.doi.org/10.1063/1.1762382
119.
119. J. M. Hamilton, J. Kim, and F. Waleffe, “Regeneration mechanisms of near-wall turbulence structures,” J. Fluid Mech. 287, 317248 (1995).
http://dx.doi.org/10.1017/S0022112095000978
120.
120. F. Waleffe, “On a self-sustaining process in shear flows,” Phys. Fluids 9, 883900 (1997).
http://dx.doi.org/10.1063/1.869185
121.
121. S. C. Reddy, P. J. Schmid, J. S. Baggett, and D. S. Henningson, “On stability of streamwise streaks and transition thresholds in plane channel flows,” J. Fluid Mech. 365, 269303 (1998).
http://dx.doi.org/10.1017/S0022112098001323
122.
122. G. Kawahara, J. Jiménez, M. Uhlmann, and A. Pinelli, “Linear instability of a corrugated vortex sheet – a model for streak instability,” J. Fluid Mech. 483, 315342 (2003).
http://dx.doi.org/10.1017/S002211200300421X
123.
123. P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, 2001), pp. 5558.
124.
124. P. J. Schmid, “Nonmodal stability theory,” Annu. Rev. Fluid Mech. 39, 129162 (2007).
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
125.
125. K. M. Butler and B. F. Farrell, “Optimal perturbations and streak spacing in wall-bounded shear flow,” Phys. Fluids A 5, 774777 (1993).
http://dx.doi.org/10.1063/1.858663
126.
126. J. C. del Álamo and J. Jiménez, “Linear energy amplification in turbulent channels,” J. Fluid Mech. 559, 205213 (2006).
http://dx.doi.org/10.1017/S0022112006000607
127.
127. C. Cossu, G. Pujals, and S. Depardon, “Optimal transient growth and very large-scale structures in turbulent boundary layers,” J. Fluid Mech. 619, 7994 (2009).
http://dx.doi.org/10.1017/S0022112008004370
128.
128. B. F. Farrell and P. J. Ioannou, “Stochastic forcing of the linearized Navier–Stokes equations,” Phys. Fluids A 5, 26002609 (1993).
http://dx.doi.org/10.1063/1.858894
129.
129. D. F. Gayme, B. J. McKeon, B. Bamieh, A. Papachristodoulou, and J. C. Doyle, “Amplification and nonlinear mechanisms in plane Couette flow,” Phys. Fluids 23, 065108 (2011).
http://dx.doi.org/10.1063/1.3599701
130.
130. J. Jiménez and P. Moin, “The minimal flow unit in near-wall turbulence,” J. Fluid Mech. 225, 213240 (1991).
http://dx.doi.org/10.1017/S0022112091002033
131.
131. J. Jiménez and M. P. Simens, “Low-dimensional dynamics in a turbulent wall flow,” J. Fluid Mech. 435, 8191 (2001).
http://dx.doi.org/10.1017/S0022112001004050
132.
132. M. Nagata, “Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity,” J. Fluid Mech. 217, 519527 (1990).
http://dx.doi.org/10.1017/S0022112090000829
133.
133. J. Jiménez, G. Kawahara, M. P. Simens, M. Nagata, and M. Shiba, “Characterization of near-wall turbulence in terms of equilibrium and ‘bursting' solutions,” Phys. Fluids 17, 015105 (2005).
http://dx.doi.org/10.1063/1.1825451
134.
134. H. T. Kim, S. J. Kline, and W. C. Reynolds, “The production of turbulence near a smooth wall in a turbulent boundary layer,” J. Fluid Mech. 50, 133160 (1971).
http://dx.doi.org/10.1017/S0022112071002490
135.
135. G. R. Offen and S. J. Kline, “A proposed model for the bursting process in turbulent boundary layers,” J. Fluid Mech. 70, 209228 (1975).
http://dx.doi.org/10.1017/S002211207500198X
136.
136. S. K. Robinson, “Coherent motions in the turbulent boundary layer,” Annu. Rev. Fluid Mech. 23, 601639 (1991).
http://dx.doi.org/10.1146/annurev.fl.23.010191.003125
137.
137. G. Kawahara and S. Kida, “Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech. 449, 291300 (2001).
http://dx.doi.org/10.1017/S0022112001006243
138.
138. O. Flores and J. Jiménez, “Hierarchy of minimal flow units in the logarithmic layer,” Phys. Fluids 22, 071704 (2010).
http://dx.doi.org/10.1063/1.3464157
139.
139. R. F. Blackwelder and J. H. Haritonidis, “Scaling of the bursting frequency in turbulent boundary layers,” J. Fluid Mech. 132, 87103 (1983).
http://dx.doi.org/10.1017/S0022112083001494
140.
140. T. S. Luchik and W. G. Tiederman, “Timescale and structure of ejections and bursts in turbulent channel flows,” J. Fluid Mech. 174, 529552 (1987).
http://dx.doi.org/10.1017/S0022112087000235
141.
141. K. N. Rao, R. Narasimha, and M. A. B. Narayanan, “The bursting phenomenon in a turbulent boundary layer,” J. Fluid Mech. 48, 339352 (1971).
http://dx.doi.org/10.1017/S0022112071001605
142.
142. J. Jiménez, “Turbulent flows over rough walls,” Annu. Rev. Fluid Mech. 36, 173196 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122103
143.
143. M. P. Schultz and K. A. Flack, “The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime,” J. Fluid Mech. 580, 381405 (2007).
http://dx.doi.org/10.1017/S0022112007005502
144.
144. Y. Mizuno and J. Jiménez, “Wall turbulence without walls,” J. Fluid Mech. 723, 429455 (2013).
http://dx.doi.org/10.1017/jfm.2013.137
145.
145. M. Gaster, E. Kit, and I. Wygnanski, “Large-scale structures in a forced turbulent mixing layer,” J. Fluid Mech. 150, 2339 (1985).
http://dx.doi.org/10.1017/S0022112085000027
146.
146. W. C. Reynolds and W. G. Tiederman, “Stability of turbulent channel flow, with application to Malkus' theory,” J. Fluid Mech. 27, 253272 (1967).
http://dx.doi.org/10.1017/S0022112067000308
147.
147. A. K. M. F. Hussain and W. C. Reynolds, “The mechanics of an organized wave in turbulent shear flow,” J. Fluid Mech. 41, 241258 (1970).
http://dx.doi.org/10.1017/S0022112070000605
148.
148. W. V. R. Malkus, “Outline of a theory of turbulent shear flow,” J. Fluid Mech. 1, 521539 (1956).
http://dx.doi.org/10.1017/S0022112056000342
149.
149. W. M. Orr, “The stability or instability of the steady motions of a perfect liquid, and of a viscous liquid. Part I: A perfect liquid,” Proc. R. Ir. Acad. A 27, 968 (1907).
150.
150. J. C. del Álamo and J. Jiménez, “Estimation of turbulent convection velocities and corrections to Taylor's approximation,” J. Fluid Mech. 640, 526 (2009).
http://dx.doi.org/10.1017/S0022112009991029
151.
151. M. Guala, S. E. Hommema, and R. J. Adrian, “Large-scale and very-large-scale motions in turbulent pipe flow,” J. Fluid Mech. 554, 521542 (2006).
http://dx.doi.org/10.1017/S0022112006008871
152.
152. B. F. Farrell and P. J. Ioannou, “Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow,” J. Fluid Mech. 708, 149196 (2012).
http://dx.doi.org/10.1017/jfm.2012.300
153.
153. S. Toh and T. Itano, “Interaction between a large-scale structure and near-wall structures in channel flow,” J. Fluid Mech. 524, 249262 (2005).
http://dx.doi.org/10.1017/S002211200400237X
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824988
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4824988
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4824988
2013-10-23
2014-09-21

Abstract

The current state of knowledge about the structure of wall-bounded turbulent flows is reviewed, with emphasis on the layers near the wall in which shear is dominant, and particularly on the logarithmic layer. It is shown that the shear interacts with scales whose size is larger than about one third of their distance to the wall, but that smaller ones, and in particular the vorticity, decouple from the shear and become roughly isotropic away from the wall. In the buffer and viscous layers, the dominant structures carrying turbulent energy are the streamwise velocity streaks, and the vortices organize both the dissipation and the momentum transfer. Farther from the wall, the velocity remains organized in streaks, although much larger ones than in the buffer layer, but the vortices lose their role regarding the Reynolds stresses. That function is taken over by wall-attached turbulent eddies with sizes and lifetimes proportional to their heights. Two kinds of eddies have been studied in some detail: vortex clusters, and ejections and sweeps. Both can be classified into a detached background, and a geometrically self-similar wall-attached family. The latter is responsible for most of the momentum transfer, and is organized into composite structures that can be used as models for the attached-eddy hierarchy hypothesized by Townsend [“Equilibrium layers and wall turbulence,” J. Fluid Mech.11, 97–120 (1961)]. The detached component seems to be common to many turbulent flows, and is roughly isotropic. Using a variety of techniques, including direct tracking of the structures, it is shown that an important characteristic of wall-bounded turbulence is temporally intermittent bursting, which is present at all distances from the wall, and in other shear flows. Its properties and time scales are reviewed, and it is shown that bursting is an important part of the production of turbulent energy from the mean shear. It is also shown that a linearized model captures many of its characteristics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4824988.html;jsessionid=4n6n28rdtbjno.x-aip-live-06?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4824988&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-wall turbulence
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4824988
10.1063/1.4824988
SEARCH_EXPAND_ITEM