1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Numerical simulations of spatially developing, accelerating boundary layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4825033
1.
1. R. Narasimha and K. R. Sreenivasan, “Relaminarization of fluid flows,” in Advances in Applied Mechanics (Academic Press Professional Inc., New York, 1979), Vol. 19, pp. 221309.
2.
2. K. R. Sreenivasan, “Laminarescent, relaminarizing and retransitional flows,” Acta Mech. 44, 148 (1982).
http://dx.doi.org/10.1007/BF01190916
3.
3. H. Schlichting, Boundary-Layer Theory (McGraw-Hill, New York, 1979).
4.
4. B. E. Launder and W. P. Jones, “Sink flow turbulent boundary layers,” J. Fluid Mech. 38, 817831 (1969).
http://dx.doi.org/10.1017/S002211206900262X
5.
5. W. P. Jones and B. E. Launder, “Some properties of sink-flow turbulent boundary layers,” J. Fluid Mech. 56, 337351 (1972).
http://dx.doi.org/10.1017/S0022112072002903
6.
6. M. A. Badri Narayanan and V. Ramjee, “On the criteria for reverse transition in a two-dimensional boundary layer flow,” J. Fluid Mech. 35, 225241 (1969).
http://dx.doi.org/10.1017/S002211206900108X
7.
7. P. Spalart, “Numerical study of sink-flow boundary layers,” J. Fluid Mech. 172, 307328 (1986).
http://dx.doi.org/10.1017/S0022112086001751
8.
8. B. E. Launder, “Laminarization of the turbulent boundary layer in a severe acceleration,” J. Appl. Mech. 31, 707708 (1964).
http://dx.doi.org/10.1115/1.3629738
9.
9. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, “The structure of turbulent boundary layers,” J. Fluid Mech. 30, 741773 (1967).
http://dx.doi.org/10.1017/S0022112067001740
10.
10. R. F. Blackwelder and L. S. G. Kovasznay, “Large-scale motion of a turbulent boundary layer during relaminarization,” J. Fluid Mech. 53, 6183 (1972).
http://dx.doi.org/10.1017/S0022112072000047
11.
11. V. C. Patel and M. R. Head, “Reversion of turbulent to laminar flow,” J. Fluid Mech. 34, 371392 (1968).
http://dx.doi.org/10.1017/S0022112068001953
12.
12. R. Narasimha and K. R. Sreenivasan, “Relaminarization in highly accelerated turbulent boundary layers,” J. Fluid Mech. 61, 417447 (1973).
http://dx.doi.org/10.1017/S0022112073000790
13.
13. R. B. Cal and L. Castillo, “Similarity analysis of favorable pressure gradient turbulent boundary layers with eventual quasilaminarization,” Phys. Fluids 20, 105106110510618 (2008).
http://dx.doi.org/10.1063/1.2991433
14.
14. H. D. Murphy, F. W. Chambers, and D. M. McEligot, “Laterally converging duct flows. Part 1. Mean flow,” J. Fluid Mech. 127, 379401 (1983).
http://dx.doi.org/10.1017/S0022112083002785
15.
15. F. W. Chambers, H. D. Murphy, and D. M. McEligot, “Laterally converging duct flows. Part 2. Temporal wall shear stress,” J. Fluid Mech. 127, 403428 (1983).
http://dx.doi.org/10.1017/S0022112083002797
16.
16. D. M. McEligot and H. Eckelmann, “Laterally converging duct flows. Part 3. Mean turbulence structure in the viscous layer,” J. Fluid Mech. 549, 2559 (2006).
http://dx.doi.org/10.1017/S0022112005007482
17.
17. D. M. McEligot, R. S. Brodkey, and H. Eckelmann, “Laterally converging duct flows. Part 4. Temporal behaviour in the viscous layer,” J. Fluid Mech. 634, 433461 (2009).
http://dx.doi.org/10.1017/S0022112009006727
18.
18. H. H. Fernholz and D. Warnack, “The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 1. The turbulent boundary layer,” J. Fluid Mech. 359, 329356 (1998).
http://dx.doi.org/10.1017/S0022112097008513
19.
19. D. Warnack and H. H. Fernholz, “The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization,” J. Fluid Mech. 359, 357371 (1998).
http://dx.doi.org/10.1017/S0022112097008501
20.
20. M. P. Escudier, A. Abdel-Hameed, M. W. Johnson, and C. J. Sutcliffe, “Laminarisation and re-transition of a turbulent boundary layer subjected to favourable pressure gradient,” Exp. Fluids 25, 491502 (1998).
http://dx.doi.org/10.1007/s003480050255
21.
21. C. Bourassa and F. O. Thomas, “An experimental investigation of a highly accelerated turbulent boundary layer,” J. Fluid Mech. 634, 359404 (2009).
http://dx.doi.org/10.1017/S0022112009007289
22.
22. U. Piomelli, E. Balaras, and A. Pascarelli, “Turbulent structures in accelerating boundary layers,” J. Turbul. 1, N1 (2000).
http://dx.doi.org/10.1088/1468-5248/1/1/001
23.
23. G. De Prisco, A. Keating, and U. Piomelli, “Large-eddy simulation of accelerating boundary layers,” AIAA Paper 2007-0725, 2007.
24.
24. Z. Harun, J. P. Monty, R. Mathis, and I. Marusic, “Pressure gradient effects on the large-scale structure of turbulent boundary layers,” J. Fluid Mech. 715, 477498 (2013).
http://dx.doi.org/10.1017/jfm.2012.531
25.
25. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 17601765 (1991).
http://dx.doi.org/10.1063/1.857955
26.
26. D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure method,” Phys. Fluids A 4, 633635 (1992).
http://dx.doi.org/10.1063/1.858280
27.
27. C. Meneveau, T. S. Lund, and W. H. Cabot, “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319, 353385 (1996).
http://dx.doi.org/10.1017/S0022112096007379
28.
28. A. J. Chorin, “Numerical solution of Navier-Stokes equations,” Math. Comput. 22, 745762 (1968).
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
29.
29. J. Kim and P. Moin, “Application of a fractional step method to incompressible Navier-Stokes equations,” J. Comput. Phys. 59, 308323 (1985).
http://dx.doi.org/10.1016/0021-9991(85)90148-2
30.
30. Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, “Fully conservative higher order finite difference schemes for incompressible flows,” J. Comput. Phys. 143, 90124 (1998).
http://dx.doi.org/10.1006/jcph.1998.5962
31.
31. A. Keating, U. Piomelli, E. Balaras, and H.-J. Kaltenbach, “A priori and a posteriori tests of inflow conditions for large-eddy simulation,” Phys. Fluids 16, 46964712 (2004).
http://dx.doi.org/10.1063/1.1811672
32.
32. A. Keating, U. Piomelli, K. Bremhorst, and S. Nešić, “Large-eddy simulation of heat transfer downstream of a backward-facing step,” J. Turbul. 5, N20 (2004).
http://dx.doi.org/10.1088/1468-5248/5/1/020
33.
33. A. Keating and U. Piomelli, “A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation,” J. Turbul. 7, N12 (2006).
http://dx.doi.org/10.1080/14685240612331392460
34.
34. T. S. Lund, X. Wu, and K. D. Squires, “Generation of inflow data for spatially-developing boundary layer simulations,” J. Comput. Phys. 140, 233258 (1998).
http://dx.doi.org/10.1006/jcph.1998.5882
35.
35. I. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys. 21, 251269 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90023-1
36.
36. H. M. Nagib and K. A. Chauhan, “Variations of von kármán coefficient in canonical flows,” Phys. Fluids 20, 101518110151810 (2008).
http://dx.doi.org/10.1063/1.3006423
37.
37. X. Wu and P. Moin, “Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer,” J. Fluid Mech. 630, 541 (2009).
http://dx.doi.org/10.1017/S0022112009006624
38.
38. J. Jiménez and A. Pinelli, “The autonomous cycle of near-wall turbulence,” J. Fluid Mech. 389, 335359 (1999).
http://dx.doi.org/10.1017/S0022112099005066
39.
39. W. Schoppa and F. Hussain, “Generation of near-wall coherent structures in a turbulent boundary layer,” Curr. Sci. 79, 849858 (2000).
40.
40. W. Schoppa and F. Hussain, “Coherent structure generation in near-wall turbulence,” J. Fluid Mech. 453, 57108 (2002).
http://dx.doi.org/10.1017/S002211200100667X
41.
41. A. Scotti, “Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper,” Phys. Fluids 18, 031701 (2006).
http://dx.doi.org/10.1063/1.2183806
42.
42. J. Yuan, “Large-eddy simulations of accelerating boundary-layer flows over rough surfaces,” Master's thesis (Queen's University, 2011).
43.
43. P. Orlandi, S. Leonardi, R. Tuzi, and R. A. Antonia, “Direct numerical simulation of turbulent channel flow with wall velocity disturbances,” Phys. Fluids 15, 3587 (2003).
http://dx.doi.org/10.1063/1.1619137
44.
44. J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, “Mechanisms for generating coherent packets of hairpin vortices in channel flow,” J. Fluid Mech. 387, 353396 (1999).
http://dx.doi.org/10.1017/S002211209900467X
45.
45. R. J. Adrian, C. D. Meinhart, and C. D. Tomkins, “Vortex organization in the outer region of the turbulent boundary layer,” J. Fluid Mech. 422, 154 (2000).
http://dx.doi.org/10.1017/S0022112000001580
46.
46. P. S. Bernard and J. M. Wallace, Turbulent Flow: Analysis, Measurement, and Prediction (Wiley, Hoboken, NJ, 2002).
47.
47. Y. Dubief and F. Delcayre, “On coherent vortex identification in turbulence,” J. Turbul. 1, N11 (2000).
http://dx.doi.org/10.1088/1468-5248/1/1/011
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4825033
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4825033
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4825033
2013-10-23
2014-09-22

Abstract

We present the results of direct and large-eddy simulations of spatially developing boundary layers subjected to favorable pressure gradient, strong enough to cause reversion of the flow towards a quasi-laminar state. The numerical results compare well with experimental data. Visualization of the flow structures shows the well-known stabilization of the streaks, the re-orientation of outer layer vortices in the streamwise direction, and the appearance of turbulent spots in the re-transition region. Both instantaneous visualizations and turbulent statistics highlight the significant damping of wall-normal and spanwise fluctuations. The fast component of the pressure fluctuations appears to be the main driver of this process, contributing to reduce pressure fluctuations and, as a consequence, the energy redistribution term in the Reynolds stress budgets. The streamwise stresses, in whose budget a separate production term plays a role, do not decay but remain frozen at their upstream value. The decrease of wall-normal and spanwise fluctuations appears to be the main cause of the inner-layer stabilization, by disrupting the generation and subsequent growth of streaks, consistent with various models of the turbulence-generation cycle proposed in the literature. The outer layer seems to play a passive role in this process. The stretching and reorientation of the outer-layer vortices results in a more orderly and organized structure; since fewer ejections occur, the inner layer does not break this re-organization, which is maintained until re-transition begins.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4825033.html;jsessionid=d7o2hc712660d.x-aip-live-06?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4825033&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical simulations of spatially developing, accelerating boundary layers
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4825033
10.1063/1.4825033
SEARCH_EXPAND_ITEM