1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Rotating shallow water turbulence: Experiments with altimetry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4826477
1.
1. A. Ibbetson and D. Tritton, “Experiments on turbulence in a rotating fluid,” J. Fluid Mech. 68, 639 (1975).
http://dx.doi.org/10.1017/S0022112075001164
2.
2. E. J. Hopfinger, F. K. Browand, and Y. Gagne, “Turbulence and waves in a rotating tank,” J. Fluid Mech. 125, 505 (1982).
http://dx.doi.org/10.1017/S0022112082003462
3.
3. S. C. Dickinson and R. R. Long, “Oscillating-grid turbulence including effects of rotation,” J. Fluid Mech. 126, 315 (1983).
http://dx.doi.org/10.1017/S002211208300018X
4.
4. C. Morize, F. Moisy, and M. Rabaud, “Decaying grid-generated turbulence in a rotating tank,” Phys. Fluids 17, 095105 (2005).
http://dx.doi.org/10.1063/1.2046710
5.
5. G. P. Bewley, D. P. Lathrop, L. R. M. Maas, and K. R. Sreenivasan, “Inertial waves in rotating grid turbulence,” Phys. Fluids 19, 071701 (2007).
http://dx.doi.org/10.1063/1.2747679
6.
6. A. D. McEwan, “Angular momentum diffusion and the initiation of cyclones,” Nature (London) 260, 126 (1976).
http://dx.doi.org/10.1038/260126a0
7.
7. I. Kolvin, K. Cohen, Y. Vardi, and E. Sharon, “Energy transfer by inertial waves during the buildup of turbulence in a rotating system,” Phys. Rev. Lett. 102(1), 014503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.014503
8.
8. L. J. A. van Bokhoven, H. J. H. Clercx, G. J. F. van Heijst, and R. R. Trieling, “Experiments on rapidly rotating turbulent flows,” Phys. Fluids 21, 096601 (2009).
http://dx.doi.org/10.1063/1.3197876
9.
9. B. Cushman-Roisin and B. Tang, “Geostrophic turbulence and emergence of eddies beyond the radius of deformation,” J. Phys. Oceanogr. 20, 97 (1990).
http://dx.doi.org/10.1175/1520-0485(1990)020<0097:GTAEOE>2.0.CO;2
10.
10. M. Arai and T. Yamagata, “Asymmetric evolution of eddies in rotating shallow water,” Chaos 4, 163 (1994).
http://dx.doi.org/10.1063/1.166001
11.
11. L. M. Polvani, J. C. McWilliams, M. A. Spall, and R. Ford, “The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation,” Chaos 4, 177 (1994).
http://dx.doi.org/10.1063/1.166002
12.
12. L. P. Graves, J. C. McWilliams, and M. T. Montgomery, “Vortex evolution due to straining: A mechanism for dominance of strong, interior anticyclones,” Geophys. Astrophys. Fluid Dyn. 100, 151 (2006).
http://dx.doi.org/10.1080/03091920600792041
13.
13. N. Lahaye and V. Zeitlin, “Decaying vortex and wave turbulence in rotating shallow water model, as follows from high resolution direct numerical simulations,” Phys. Fluids 24, 115106 (2012).
http://dx.doi.org/10.1063/1.4767723
14.
14. P. Bartello, O. Metais, and M. Lesieur, “Coherent structures in rotating three-dimensional turbulence,” J. Fluid Mech. 273, 1 (1994).
http://dx.doi.org/10.1017/S0022112094001837
15.
15. L. M. Smith and F. Waleffe, “Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence,” Phys. Fluids 11(6), 1608 (1999).
http://dx.doi.org/10.1063/1.870022
16.
16. F. Moisy, C. Morize, M. Rabaud, and J. Sommeria, “Decay laws, anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence,” J. Fluid Mech. 666, 5 (2011).
http://dx.doi.org/10.1017/S0022112010003733
17.
17. Y. D. Afanasyev and J. Wells, “Quasi-two-dimensional turbulence on the polar beta-plane: Laboratory experiments,” Geophys. Astrophys. Fluid Dyn. 99, 1 (2005).
http://dx.doi.org/10.1080/03091920412331319513
18.
18. Y. D. Afanasyev, S. O’Leary, P. B. Rhines, and E. G. Lindahl, “On the origin of jets in the ocean,” Geophys. Astrophys. Fluid Dyn. 106(2), 113 (2012).
http://dx.doi.org/10.1080/03091929.2011.562896
19.
19. V. Zeitlin, “Nonlinear dynamics of rotating shallow water: Methods and advances,” Advances in Nonlinear Science and Complexity Vol. 2 (Elsevier, 2007).
20.
20. S. D. Danilov and D. Gurarie, “Quasi-two-dimensional turbulence,” Phys. Usp. 43(9), 863 (2000).
http://dx.doi.org/10.1070/PU2000v043n09ABEH000782
21.
21. G. Boffetta and R. E. Ecke, “Two-dimensional turbulence,” Annu. Rev. Fluid Mech. 44, 427 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
22.
22. R. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys. Fluids 10, 1417 (1967).
http://dx.doi.org/10.1063/1.1762301
23.
23. L. Yuan and K. Hamilton, “Equilibrium dynamics in a forced-dissipative f-plane shallow water system,” J. Fluid Mech. 280, 369 (1994).
http://dx.doi.org/10.1017/S0022112094002971
24.
24. J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8 C to 150 C,” J. Phys. Chem. Ref. Data 7(3), 941948 (1978).
http://dx.doi.org/10.1063/1.555581
25.
25. D. Marteau, O. Cardoso, and P. Tabeling, “Equilibrium states of two-dimensional turbulence: An experimental study,” Phys. Rev. E 51, 5124 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.5124
26.
26. Y. D. Afanasyev and V. N. Korabel, “Wakes and vortex streets generated by translating force and force doublet: Laboratory experiments,” J. Fluid Mech. 553, 119141 (2006).
http://dx.doi.org/10.1017/S0022112006008986
27.
27. M. V. Nezlin, “Rossby solitary vortices, on giant planets and in the laboratory,” Chaos 4, 187 (1994).
http://dx.doi.org/10.1063/1.166003
28.
28. A. Stegner and V. Zeitlin, “From quasi-geostrophic to strongly nonlinear monopolar vortices in a paraboloidal shallow-water-layer experiment,” J. Fluid Mech. 356, 1 (1998).
http://dx.doi.org/10.1017/S0022112097008082
29.
29. Y. D. Afanasyev, P. B. Rhines, and E. G. Lindahl, “Velocity and potential vorticity fields measured by altimetric imaging velocimetry in the rotating fluid,” Exp. Fluids. 47, 913 (2009).
http://dx.doi.org/10.1007/s00348-009-0689-3
30.
30. S. I. Voropayev and Y. D. Afanasyev, Vortex Structures in a Stratified Fluid: Order from Chaos (Chapman and Hall, London, 1994).
31.
31. Y. D. Afanasyev and V. N. Korabel, “Starting vortex dipoles in a viscous fluid: Asymptotic theory, numerical simulations and laboratory experiments,” Phys Fluids 16(11), 3850 (2004).
http://dx.doi.org/10.1063/1.1790493
32.
32. S. Danilov, F. V. Dolzhanskii, V. A. Dovzhenko, and V. A. Krymov, “Experiments on free decay of quasi-two-dimensional turbulent flows,” Phys. Rev. E 65, 036316 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036316
33.
33. B. Ribstein, J. Gula, and V. Zeitlin, “(A)geostrophic adjustment of dipolar perturbations, formation of coherent structures and their properties, as follows from high-resolution numerical simulations with rotating shallow water model,” Phys. Fluids 22, 116603111660314 (2010).
http://dx.doi.org/10.1063/1.3514200
34.
34. A. C. Colin de Verdiere, “Quasi-geostrophic turbulence in a rotating homogeneous fluid,” Geophys. Astrophys. Fluid Dyn. 15, 213251 (1980).
http://dx.doi.org/10.1080/03091928008241179
35.
35. H. Xia, H. Punzmann, G. Falkovich, and M. G. Shats, “Turbulence-condensate interaction in two dimensions,” Phys. Rev. Lett. 101, 194504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.194504
36.
36. H. Xia, D. Byrne, and G. Falkovich, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys. 7, 321 (2011).
http://dx.doi.org/10.1038/nphys1910
37.
37. J. SommeriaExperimental study of the two-dimensional inverse energy cascade in a square box,” J. Fluid Mech. 170, 139 (1986).
http://dx.doi.org/10.1017/S0022112086000836
38.
38. J. Paret and P. Tabeling, “Experimental observation of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 79, 4162 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4162
39.
39. P. B. Rhines, “Waves and turbulence on a beta-plane,” J. Fluid Mech. 69, 417 (1975).
http://dx.doi.org/10.1017/S0022112075001504
40.
40. C. Wunsch, “Toward a midlatitude ocean frequency–wavenumber spectral density and trend determination,” J. Phys. Ocean. 40, 2264 (2010).
http://dx.doi.org/10.1175/2010JPO4376.1
41.
41. M. K. Rivera, W. B. Daniel, S. Y. Chen, and R. E. Ecke, “Energy and enstrophy transfer in decaying two-dimensional turbulence,” Phys. Rev. Lett. 90, 104502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.104502
42.
42. S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.214501
43.
43. S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.084502
44.
44. Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, “Physical mechanism of the inverse energy cascade of two-dimensional turbulence: A numerical investigation,” J. Fluid Mech. 619, 1 (2009).
http://dx.doi.org/10.1017/S0022112008004266
45.
45. Y. Kimura and J. R. Herring, “Gradient enhancement and filament ejection for a non-uniform elliptic vortex in two-dimensional turbulence,” J. Fluid Mech. 439, 43 (2001).
http://dx.doi.org/10.1017/S0022112001004529
46.
46. R. H. Kraichnan, “Statistical dynamics of two-dimensional flow,” J. Fluid Mech. 67, 155 (1975).
http://dx.doi.org/10.1017/S0022112075000225
47.
47. R. H. Kraichnan, “Eddy viscosity in two and three dimensions,” J. Atmos. Sci. 33, 1521 (1976).
http://dx.doi.org/10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
48.
48. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
49.
49. L. Zavala Sansón, “The asymmetric Ekman decay of cyclonic and anticyclonic vortices,” Eur. J. Mech. B/Fluids 20, 541 (2001).
http://dx.doi.org/10.1016/S0997-7546(01)01128-1
50.
50. Y. D. Afanasyev, P. B. Rhines, and E. G. Lindahl, “Emission of inertial waves by baroclinically unstable flows: Laboratory experiments with altimetric imaging velocimetry,” J. Atmos. Sci. 65, 250 (2008).
http://dx.doi.org/10.1175/2007JAS2336.1
51.
51. R. C. Kloosterziel and G. J. F. van Heijst, “An experimental study of unstable barotropic vortices in a rotating fluid,” J. Fluid Mech. 223, 1 (1991).
http://dx.doi.org/10.1017/S0022112091001301
52.
52. Y. D. Afanasyev and W. R. Peltier, “Three-dimensional instability of anticyclonic barotropic vortices in rotating fluid: laboratory experiments and related theoretical predictions,” Phys. Fluids 10, 3194 (1998).
http://dx.doi.org/10.1063/1.869846
53.
53. Y. D. Afanasyev, “Experiments on instability of columnar vortex pairs in rotating fluid,” Geophys. Astrophys. Fluid Dyn. 96(1), 31 (2002).
http://dx.doi.org/10.1080/03091920290018835
54.
54. G. F. Carnevale, R. C. Kloosterziel, P. Orlandi, and D. D. J. A. van Sommeren, “Predicting the aftermath of vortex breakup in rotating flow,” J. Fluid Mech. 669, 90 (2011).
http://dx.doi.org/10.1017/S0022112010004945
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826477
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4826477
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4826477
2013-10-28
2014-11-22

Abstract

Results from a new series of experiments on turbulent flows in a rotating circular container are presented. Electromagnetic forcing is applied to induce flow in a layer of fluid of constant depth. Continuously forced and decaying flows are investigated. Optical altimetry is used to measure the gradient of the surface elevation field and to obtain the velocity and vorticity fields with high temporal and spatial resolution. Spectral analysis of the flows demonstrates the formation of dual cascade with energy and enstrophy intervals although the corresponding spectral fluxes of energy and enstrophy are not uniform in these intervals. The energy interval is characterized by the slope of ∼−5/3 in terms of wavenumber and is limited in extent by the finite radius of deformation effect. In the enstrophy range, the slope is steeper than −3 due to the presence of long-lived coherent vortices. The spatial patterns of fluxes to large or small scales in the flow indicate that inverse energy transfer and direct enstrophy transfer occur mainly in elongated vorticity patches. Cyclone/anticyclone asymmetry in favor of anticyclones is observed in our flows. Dominance of anticyclones is most clear during the decay phase of turbulence. The anticyclones remain circular, while cyclonic vorticity is stretched into elongated patches. Measurements show that skewness of vorticity distribution increases with increasing Froude number of the flow.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4826477.html;jsessionid=1b1nadu0gjf03.x-aip-live-06?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4826477&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rotating shallow water turbulence: Experiments with altimetry
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826477
10.1063/1.4826477
SEARCH_EXPAND_ITEM