Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. C. Gregg, “Scaling turbulent dissipation in the thermocline,” J. Geophys. Res. 94, 9686, doi:10.1029/JC094iC07p09686 (1989).
2. G. O. Marmorino, L. J. Rosenblum, and C. L. Trump, “Fine-scale temperature variability: the influence of near-inertial waves,” J. Geophys. Res. 92(13), 13049, doi:10.1029/JC092iC12p13049 (1987).
3. J. M. Klymak, M. Buijsman, S. M. Legg, and R. Pinkel, “The direct breaking of internal waves at steep topography,” Oceanography 25, 150 (2012).
4. H. van Haren and L. Gostiaux, “Large internal waves advection in very weakly stratified deep Mediterranean waters,” Geophys. Res. Lett. 38, L22603, doi:10.1029/2011GL049707 (2011).
5. K. L. Polzin, K. G. Speer, J. M. Toole, and R. W. Schmitt, “Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean,” Nature (London) 380, 54 (1996).
6. W. Munk, “Abyssal recipes,” Deep-Sea Res. 13, 707 (1966).
7. L. Armi, “Some evidence for boundary mixing in the deep ocean,” J. Geophys. Res. 83, 1971, doi:10.1029/JC083iC04p01971 (1978).
8. C. Garrett, “The role of secondary circulation in boundary mixing,” J. Geophys. Res. 95, 3181, doi:10.1029/JC095iC03p03181 (1990).
9. S. A. Thorpe, “Current and temperature variability on the continental slope,” Philos. Trans. R. Soc. London, Ser. A 323, 471 (1987).
10. H. van Haren, M. Laan, D.-J. Buijsman, L. Gostiaux, M. G. Smit, and E. Keijzer, “NIOZ3: independent temperature sensors sampling yearlong data at a rate of 1 Hz,” IEEE J. Ocean. Eng. 34, 315 (2009).
11. H. van Haren and L. Gostiaux, “Detailed internal wave mixing above a deep-ocean slope,” J. Mar. Res. 70, 173 (2012).
12. J. N. Moum, D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, “Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf,” J. Phys. Oceanogr. 33, 2093 (2003).<2093:SAGOTA>2.0.CO;2
13. W. R. Geyer, A. C. Lavery, M. E. Scully, and J. H. Trowbridge, “Mixing by shear instability at high Reynolds number,” Geophys. Res. Lett. 37, L22607, doi:10.1029/2010GL045272 (2010).
14. W. R. Geyer and J. D. Smith, “Shear instability in a highly stratified estuary,” J. Phys. Oceanogr. 17, 1668 (1987).<1668:SIIAHS>2.0.CO;2
15. W. D. Smyth and K. B. Winters, “Turbulence and mixing in Holmboe waves,” J. Phys. Oceanogr. 33, 694 (2003).<694:TAMIHW>2.0.CO;2
16. J. R. Carpenter, G. A. Lawrence, and W. D. Smyth, “Evolution and mixing of asymmetric Holmboe instabilities,” J. Fluid Mech. 582, 103 (2007).
17. S. A. Thorpe, “A method of producing a shear flow in a stratified fluid,” J. Fluid Mech. 32, 693 (1968).
18. G. A. Lawrence, F. K. Browand, and L. G. Redekopp, “The stability of a sheared density interface,” Phys. Fluids A 3, 2360 (1991).
19. H. van Haren and J. Greinert, “Variability of internal frontal bore breaking above Opouawe Bank methane seep area (New Zealand),” Geochem. Geophys. Geosys. 14, 2460, doi:10.1002/ggge.20170 (2013).
20. K. Faure, J. Greinert, J. S. von Deimling, D. F. McGinnis, R. Kipfer, and P. Linke, “Methane seepage along the Hikurangi Margin of New Zealand: Geochemical and physical evidence from the water column, sea surface and atmosphere,” Mar. Geol. 272, 170 (2010).
21. P. Linke, S. Sommer, L. Rovelli, and D. F. McGinnis, “Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes,” Mar. Geol. 272, 209 (2010).
22. T. J. McDougall, R. Feistel, F. J. Millero, D. R. Jackett, D. G. Wright, B. A. King, G. M. Marion, C.-T. A. Chen, and P. Spitzer, “Calculation of the thermodynamic properties of seawater, global ship-based repeat hydrography manual,” IOCCP Report 14, ICPO Publication Series 134 (U.N.E.S.C.O., Paris, 2009).
23. TEOS, 2010, see
24. S. A. Thorpe, “Turbulence and mixing in a Scottish loch,” Philos. Trans. R. Soc. London, Ser. A 286, 125 (1977).
25. P. S. Galbraith and D. E. Kelley, “Identifying overturns in CTD profiles,” J. Atmos. Ocean. Tech. 13, 688 (1996).<0688:IOICP>2.0.CO;2
26. T. M. Dillon, “Vertical overturns: a comparison of Thorpe and Ozmidov length scales,” J. Geophys. Res. 87, 9601, doi:10.1029/JC087iC12p09601 (1982).
27. T. R. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr. 10, 83 (1980).<0083:EOTLRO>2.0.CO;2
28. N. S. Oakey, “Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements,” J. Phys. Oceanogr. 12, 256 (1982).<0256:DOTROD>2.0.CO;2
29. C. Wunsch, “Internal tides in the ocean,” Rev. Geophys. Space Phys. 13, 167, doi:10.1029/RG013i001p00167 (1975).
30. H. van Haren and L. Gostiaux, “Energy release through internal wave breaking,” Oceanography 25, 124 (2012).
31. R. E. Davis and A. Acrivos, “Solitary internal waves in deep water,” J. Fluid Mech. 29, 593607 (1967).
32. E. W. Tedford, J. R. Carpenter, R. Pawlowicz, R. Pieters, and G. A. Lawrence, “Observation and analysis of shear instability in the Fraser River estuary,” J. Geophys. Res. 114, C11006, doi:10.1029/2009JC005313 (2009).
33. H. van Haren, “Internal waves near the buoyancy frequency in a narrow wave-guide,” J. Sea Res. 53, 121 (2005).
34. M. D. Patterson, C. P. Caulfield, J. N. McElwaine, and S. B. Dalziel, “Time-dependent mixing in stratified Kelvin-Helmholtz billows: experimental observations,” Geophys. Res. Lett. 33, L15608, doi:10.1029/2006GL026949 (2006).
35. W. D. Smyth, “Secondary circulations in Holmboe waves,” Phys. Fluids 18, 064104 (2006).
36. A. Cimatoribus, personal communication (2013).

Data & Media loading...


Article metrics loading...



When ocean's internal tidal waves “beach” at underwater topography, they transform from more or less linear into highly nonlinear waves that can break with generation of vigorous turbulent mixing. Although most mixing occurs in the half hour around a steep (bottom-)front leading the upslope moving internal tide phase, relatively large mixing also occurs some distance of several tens of meters off the bottom, just prior to the downslope moving internal tide phase and initiated by high-frequency “small-scale” internal waves. Details of this off-bottom small-scale mixing in a stratified natural environment and some of its variability per tidal period are presented here in two case studies using high-resolution temperature observations (61 sensors at 1 m intervals; <10−3 °C precision) at a 969 m deep site south of New Zealand. The observations shed some light on stratified turbulence that is generated in a relatively thick (∼30 m) weakly stratified layer and in the strongly stratified interfaces above and below. The interfacial internal waves generate turbulence with largest dissipation rate and temperature variance at the edge of the upper interface and the weakly stratified layer. When these waves steep nonlinearly, immediate moderate turbulence generation is observed below, throughout the weakly stratified layer. Largest turbulence is generated by 25 m high asymmetric Holmboe overturns.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd