1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Stratified turbulence and small-scale internal waves above deep-ocean topography
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4826888
1.
1. M. C. Gregg, “Scaling turbulent dissipation in the thermocline,” J. Geophys. Res. 94, 9686, doi:10.1029/JC094iC07p09686 (1989).
http://dx.doi.org/10.1029/JC094iC07p09686
2.
2. G. O. Marmorino, L. J. Rosenblum, and C. L. Trump, “Fine-scale temperature variability: the influence of near-inertial waves,” J. Geophys. Res. 92(13), 13049, doi:10.1029/JC092iC12p13049 (1987).
http://dx.doi.org/10.1029/JC092iC12p13049
3.
3. J. M. Klymak, M. Buijsman, S. M. Legg, and R. Pinkel, “The direct breaking of internal waves at steep topography,” Oceanography 25, 150 (2012).
http://dx.doi.org/10.5670/oceanog.2012.50
4.
4. H. van Haren and L. Gostiaux, “Large internal waves advection in very weakly stratified deep Mediterranean waters,” Geophys. Res. Lett. 38, L22603, doi:10.1029/2011GL049707 (2011).
http://dx.doi.org/10.1029/2011GL049707
5.
5. K. L. Polzin, K. G. Speer, J. M. Toole, and R. W. Schmitt, “Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean,” Nature (London) 380, 54 (1996).
http://dx.doi.org/10.1038/380054a0
6.
6. W. Munk, “Abyssal recipes,” Deep-Sea Res. 13, 707 (1966).
7.
7. L. Armi, “Some evidence for boundary mixing in the deep ocean,” J. Geophys. Res. 83, 1971, doi:10.1029/JC083iC04p01971 (1978).
http://dx.doi.org/10.1029/JC083iC04p01971
8.
8. C. Garrett, “The role of secondary circulation in boundary mixing,” J. Geophys. Res. 95, 3181, doi:10.1029/JC095iC03p03181 (1990).
http://dx.doi.org/10.1029/JC095iC03p03181
9.
9. S. A. Thorpe, “Current and temperature variability on the continental slope,” Philos. Trans. R. Soc. London, Ser. A 323, 471 (1987).
http://dx.doi.org/10.1098/rsta.1987.0100
10.
10. H. van Haren, M. Laan, D.-J. Buijsman, L. Gostiaux, M. G. Smit, and E. Keijzer, “NIOZ3: independent temperature sensors sampling yearlong data at a rate of 1 Hz,” IEEE J. Ocean. Eng. 34, 315 (2009).
http://dx.doi.org/10.1109/JOE.2009.2021237
11.
11. H. van Haren and L. Gostiaux, “Detailed internal wave mixing above a deep-ocean slope,” J. Mar. Res. 70, 173 (2012).
http://dx.doi.org/10.1357/002224012800502363
12.
12. J. N. Moum, D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, “Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf,” J. Phys. Oceanogr. 33, 2093 (2003).
http://dx.doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
13.
13. W. R. Geyer, A. C. Lavery, M. E. Scully, and J. H. Trowbridge, “Mixing by shear instability at high Reynolds number,” Geophys. Res. Lett. 37, L22607, doi:10.1029/2010GL045272 (2010).
http://dx.doi.org/10.1029/2010GL045272
14.
14. W. R. Geyer and J. D. Smith, “Shear instability in a highly stratified estuary,” J. Phys. Oceanogr. 17, 1668 (1987).
http://dx.doi.org/10.1175/1520-0485(1987)017<1668:SIIAHS>2.0.CO;2
15.
15. W. D. Smyth and K. B. Winters, “Turbulence and mixing in Holmboe waves,” J. Phys. Oceanogr. 33, 694 (2003).
http://dx.doi.org/10.1175/1520-0485(2003)33<694:TAMIHW>2.0.CO;2
16.
16. J. R. Carpenter, G. A. Lawrence, and W. D. Smyth, “Evolution and mixing of asymmetric Holmboe instabilities,” J. Fluid Mech. 582, 103 (2007).
http://dx.doi.org/10.1017/S0022112007005988
17.
17. S. A. Thorpe, “A method of producing a shear flow in a stratified fluid,” J. Fluid Mech. 32, 693 (1968).
http://dx.doi.org/10.1017/S0022112068000972
18.
18. G. A. Lawrence, F. K. Browand, and L. G. Redekopp, “The stability of a sheared density interface,” Phys. Fluids A 3, 2360 (1991).
http://dx.doi.org/10.1063/1.858175
19.
19. H. van Haren and J. Greinert, “Variability of internal frontal bore breaking above Opouawe Bank methane seep area (New Zealand),” Geochem. Geophys. Geosys. 14, 2460, doi:10.1002/ggge.20170 (2013).
http://dx.doi.org/10.1002/ggge.20170
20.
20. K. Faure, J. Greinert, J. S. von Deimling, D. F. McGinnis, R. Kipfer, and P. Linke, “Methane seepage along the Hikurangi Margin of New Zealand: Geochemical and physical evidence from the water column, sea surface and atmosphere,” Mar. Geol. 272, 170 (2010).
http://dx.doi.org/10.1016/j.margeo.2010.01.001
21.
21. P. Linke, S. Sommer, L. Rovelli, and D. F. McGinnis, “Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes,” Mar. Geol. 272, 209 (2010).
http://dx.doi.org/10.1016/j.margeo.2009.03.020
22.
22. T. J. McDougall, R. Feistel, F. J. Millero, D. R. Jackett, D. G. Wright, B. A. King, G. M. Marion, C.-T. A. Chen, and P. Spitzer, “Calculation of the thermodynamic properties of seawater, global ship-based repeat hydrography manual,” IOCCP Report 14, ICPO Publication Series 134 (U.N.E.S.C.O., Paris, 2009).
23.
23. TEOS, 2010, see http://www.teos-10.org/.
24.
24. S. A. Thorpe, “Turbulence and mixing in a Scottish loch,” Philos. Trans. R. Soc. London, Ser. A 286, 125 (1977).
http://dx.doi.org/10.1098/rsta.1977.0112
25.
25. P. S. Galbraith and D. E. Kelley, “Identifying overturns in CTD profiles,” J. Atmos. Ocean. Tech. 13, 688 (1996).
http://dx.doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2
26.
26. T. M. Dillon, “Vertical overturns: a comparison of Thorpe and Ozmidov length scales,” J. Geophys. Res. 87, 9601, doi:10.1029/JC087iC12p09601 (1982).
http://dx.doi.org/10.1029/JC087iC12p09601
27.
27. T. R. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr. 10, 83 (1980).
http://dx.doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
28.
28. N. S. Oakey, “Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements,” J. Phys. Oceanogr. 12, 256 (1982).
http://dx.doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2
29.
29. C. Wunsch, “Internal tides in the ocean,” Rev. Geophys. Space Phys. 13, 167, doi:10.1029/RG013i001p00167 (1975).
http://dx.doi.org/10.1029/RG013i001p00167
30.
30. H. van Haren and L. Gostiaux, “Energy release through internal wave breaking,” Oceanography 25, 124 (2012).
http://dx.doi.org/10.5670/oceanog.2012.47
31.
31. R. E. Davis and A. Acrivos, “Solitary internal waves in deep water,” J. Fluid Mech. 29, 593607 (1967).
http://dx.doi.org/10.1017/S0022112067001041
32.
32. E. W. Tedford, J. R. Carpenter, R. Pawlowicz, R. Pieters, and G. A. Lawrence, “Observation and analysis of shear instability in the Fraser River estuary,” J. Geophys. Res. 114, C11006, doi:10.1029/2009JC005313 (2009).
http://dx.doi.org/10.1029/2009JC005313
33.
33. H. van Haren, “Internal waves near the buoyancy frequency in a narrow wave-guide,” J. Sea Res. 53, 121 (2005).
http://dx.doi.org/10.1016/j.seares.2004.06.001
34.
34. M. D. Patterson, C. P. Caulfield, J. N. McElwaine, and S. B. Dalziel, “Time-dependent mixing in stratified Kelvin-Helmholtz billows: experimental observations,” Geophys. Res. Lett. 33, L15608, doi:10.1029/2006GL026949 (2006).
http://dx.doi.org/10.1029/2006GL026949
35.
35. W. D. Smyth, “Secondary circulations in Holmboe waves,” Phys. Fluids 18, 064104 (2006).
http://dx.doi.org/10.1063/1.2210504
36.
36. A. Cimatoribus, personal communication (2013).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826888
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4826888
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4826888
2013-10-30
2014-09-03

Abstract

When ocean's internal tidal waves “beach” at underwater topography, they transform from more or less linear into highly nonlinear waves that can break with generation of vigorous turbulent mixing. Although most mixing occurs in the half hour around a steep (bottom-)front leading the upslope moving internal tide phase, relatively large mixing also occurs some distance of several tens of meters off the bottom, just prior to the downslope moving internal tide phase and initiated by high-frequency “small-scale” internal waves. Details of this off-bottom small-scale mixing in a stratified natural environment and some of its variability per tidal period are presented here in two case studies using high-resolution temperature observations (61 sensors at 1 m intervals; <10−3 °C precision) at a 969 m deep site south of New Zealand. The observations shed some light on stratified turbulence that is generated in a relatively thick (∼30 m) weakly stratified layer and in the strongly stratified interfaces above and below. The interfacial internal waves generate turbulence with largest dissipation rate and temperature variance at the edge of the upper interface and the weakly stratified layer. When these waves steep nonlinearly, immediate moderate turbulence generation is observed below, throughout the weakly stratified layer. Largest turbulence is generated by 25 m high asymmetric Holmboe overturns.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4826888.html;jsessionid=1c6nd57lf86e9.x-aip-live-06?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4826888&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Stratified turbulence and small-scale internal waves above deep-ocean topography
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826888
10.1063/1.4826888
SEARCH_EXPAND_ITEM