1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Similarity theory of lubricated Hertzian contacts
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/10/10.1063/1.4826981
1.
1. B. J. Hamrock, S. R. Schmid, and B. O. Jacobson, Fundamentals of Fluid Film Lubrication, 2nd ed. (Marcel Dekker, New York, 2004).
2.
2. J. M. Skotheim and L. Mahadevan, “Soft lubrication,” Phys. Rev. Lett. 92, 245509 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245509
3.
3. J. M. Skotheim and L. Mahadevan, “Soft lubrication: The elastohydrodynamic of nonconforming and conforming contacts,” Phys. Fluids 17, 092101 (2005).
http://dx.doi.org/10.1063/1.1985467
4.
4. R. Gohar and H. Rahnejat, Fundamentals of Tribology (Imperial College Press, London, 2012).
5.
5. R. Gohar, Elastohydrodynamics, Ellis Horwood Series in Engineering Science (E. Horwood, Chichester, West Sussex, 1988).
6.
6. C. H. Venner and A. A. Lubrecht, Multilevel Methods in Lubrication (Elsevier, Amsterdam, 2000).
7.
7. J. Urzay, S. G. Llewellyn Smith, and B. J. Glover, “The elastohydrodynamic force on a sphere near a soft wall,” Phys. Fluids 19, 103106 (2007).
http://dx.doi.org/10.1063/1.2799148
8.
8. L. D. Landau and E. M. Lifshitz, Elasticity (Pergamon, Oxford, 1984).
9.
9. C. J. Hooke and J. P. O’Donoghue, “Elastohydrodynamic lubrication of soft, highly deformed contacts,” J. Mech. Eng. Sci. 14, 34 (1972).
http://dx.doi.org/10.1243/JMES_JOUR_1972_014_008_02
10.
10. E. J. Bissett, “The line contact problem of elastohydrodynamic lubrication. I. Asymptotic structure for low speeds,” Proc. R. Soc. London, Ser. A 424, 393 (1989).
http://dx.doi.org/10.1098/rspa.1989.0091
11.
11. E. J. Bissett and D. A. Spence, “The line contact problem of elastohydrodynamic lubrication. II. Numerical solutions of the integrodifferential equations in the transition exit layers,” Proc. R. Soc. London, Ser. A 424, 409 (1989).
http://dx.doi.org/10.1098/rspa.1989.0092
12.
12. J. Eggers and M. A. Fontelos, “The role of self-similarity in singularities of partial differential equations,” Nonlinearity 22, R1 (2009).
http://dx.doi.org/10.1088/0951-7715/22/1/R01
13.
13. F. P. Bretherton, “The motion of long bubbles in tubes,” J. Fluid Mech. 10, 166 (1961).
http://dx.doi.org/10.1017/S0022112061000160
14.
14. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
15.
15. D. Dowson and G. R. Higginson, Elastohydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication (Pergamon Press, Oxford, UK, 1966).
16.
16. P. M. Lugt, Grease Lubrication in Rolling Bearings (Wiley, 2013).
17.
17. R. H. Davis, J.-M. Serayssol, and E. J. Hinch, “The elastohydrodynamic collision of two spheres,” J. Fluid Mech. 163, 479 (1986).
http://dx.doi.org/10.1017/S0022112086002392
18.
18. J. Ashmore, C. del Pino, and T. Mullin, “Cavitation in a lubrication flow between a moving sphere and a boundary,” Phys. Rev. Lett. 94, 124501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.124501
19.
19. K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985).
20.
20. H. Hochstadt, Integral Equations (John Wiley, 1973).
21.
21. K. Herrebrugh, “Solving the incompressible and isothermal problem in elastohydrodynamic lubrication through an integral equation,” ASME J. Lubr. Technol. 90, 262 (1968).
http://dx.doi.org/10.1115/1.3601545
22.
22. W. H. Press, S. A. Teukolski, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).
23.
23. J. Seiwert, D. Quéré, and C. Clanet, “Flexible scraping of viscous fluids,” J. Fluid Mech. 715, 424 (2013).
http://dx.doi.org/10.1017/jfm.2012.527
24.
24. A. Brandt and A. A. Lubrecht, “Multilevel matrix multiplication and the fast solution of integral equations,” J. Comput. Phys. 90, 348370 (1990).
http://dx.doi.org/10.1016/0021-9991(90)90171-V
25.
25. R. Gohar and A. Cameron, “Optical measurement of oil film thickness under elasto-hydrodynamic lubrication,” Nature (London) 200, 458 (1963).
http://dx.doi.org/10.1038/200458b0
26.
26. A. D. Roberts and P. D. Swales, “The elastohydrodynamic lubrication of a highly elastic cylindrical surface,” J. Phys. D 2, 1317 (1969).
http://dx.doi.org/10.1088/0022-3727/2/9/314
27.
27. A. Martin, J. Clain, A. Buguin, and F. Brochard-Wyart, “Wetting transitions of soft, sliding interfaces,” Phys. Rev. E 65, 031605 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.031605
28.
28. P.-G. de Gennes, F. Brochart-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2003).
29.
29. S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, “Slip and flow of soft particle pastes,” Phys. Rev. Lett. 92, 198302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.198302
30.
30. S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, “Slip and flow in pastes of soft particles: Direct observation and rheology,” J. Rheol. 48, 1295 (2004).
http://dx.doi.org/10.1122/1.1795171
31.
31. C. J. Hooke, “Calculation of clearances in soft point contacts,” J. Tribol. 110, 167 (1988).
http://dx.doi.org/10.1115/1.3261558
32.
32. C. J. Hooke and C. H. Venner, “Surface roughness attenuation in line and point contacts,” J. Eng. Tribol. 214, 439 (2000).
http://dx.doi.org/10.1243/1350650001543313
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826981
Loading
/content/aip/journal/pof2/25/10/10.1063/1.4826981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/10/10.1063/1.4826981
2013-10-28
2014-08-28

Abstract

We consider a heavily loaded, lubricated contact between two elastic bodies at relative speed , such that there is substantial elastic deformation. As a result of the interplay between hydrodynamics and non-local elasticity, a fluid film develops between the two solids, whose thickness scales as 3/5. The film profile is selected by a universal similarity solution along the upstream inlet. Another similarity solution is valid at the outlet, which exhibits a local minimum in the film thickness. The two solutions are connected by a hyperbolic problem underneath the contact. Our asymptotic results for a soft sphere pressed against a hard wall are shown to agree with both experiment and numerical simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/10/1.4826981.html;jsessionid=6abersg52lufu.x-aip-live-03?itemId=/content/aip/journal/pof2/25/10/10.1063/1.4826981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Similarity theory of lubricated Hertzian contacts
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/10/10.1063/1.4826981
10.1063/1.4826981
SEARCH_EXPAND_ITEM