Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Guido and G. Tomaiuolo, “Microconfined flow behavior of red blood cells in vitro,” C. R. Phys. 10, 751 (2009).
2. A. R. Pries, T. W. Secomb, and P. Gaehtgens, “Biophysical aspects of blood flow in the microvasculature,” Cardiovasc. Res. 32, 654 (1996).
3. A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech. 37, 43 (2005).
4. S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871 (2006).
5. M. Toner and D. Irimia, “Blood-on-a-chip,” Annu. Rev. Biomed. Eng. 7, 77 (2005).
6. G. Deplaine, I. Safeukui, F. Jeddi, F. Lacoste, V. Brousse, S. Perrot, S. Biligui, M. Guillotte, C. Guitton, S. Dokmak, B. Aussilhou, A. Sauvanet, D. C. Hatem, F. Paye, M. Thellier, D. Mazier, G. Milon, N. Mohandas, O. Mercereau-Puijalon, P. H. David, and P. A. Buffet, “The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro,” Blood 117, e88 (2011).
7. R. E. Mebius and G. Kraal, “Structure and function of the spleen,” Nat. Rev. Immun. 5, 606 (2005).
8. L.-T. Chen and L. Weiss, “The role of the sinus wall in the passage of erythrocytes through the spleen,” Blood 41, 529 (1973).
9. L. Weiss, “A scanning electron microscopic study of the spleen,” Blood 43, 665 (1974).
10. H. A. del Portillo, M. Ferrer, T. Brugat, L. Martin-Jaular, J. Langhorne, and M. V. G. Lacerda, “The role of the spleen in malaria,” Cell. Microbiol. 14, 343 (2012).
11. A. C. Groom, E. E. Schmidt, and I. C. MacDonald, “Microcirculatory pathways and blood flow in spleen: New insights from washout kinetics, corrosion casts, and quantitative intravital videomicroscopy,” Scanning Microsc. 5, 159 (1991).
12. C. L. Witte, M. H. Witte, G. C. McNeill, J. N. Hall, G. P. Van der Werf, and J. M. Woolfenden, “Splenic salvage quantified by uptake of heat-damaged radiolabeled red blood cells,” Am. J. Surg. 155, 303 (1988).
13. Y. Sugawara, Y. Hayashi, Y. Shigemasa, Y. Abe, I. Ohgushi, E. Ueno, and F. Shimamoto, “Molecular biosensing mechanisms in the spleen for the removal of aged and damaged red cells from the blood circulation,” Sensors 10, 7099 (2010).
14. B. Schnitzer, T. M. Sodeman, M. L. Mead, and P. G. Contacos, “An ultrastructural study of the red pulp of the spleen in malaria,” Blood 41, 207 (1973).
15. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria,” Acta Biomater. 1, 15 (2005).
16. R. I. Weed, “The importance of erythrocyte deformability,” Am. J. Med. 49, 147 (1970).
17. D. Shemin and D. Rittenberg, “The life span of the human red blood cell,” J. Biol. Chem. 116, 627 (1946).
18. M. R. Clark, “Senescence of red blood cells: Progress and problems,” Physiol. Rev. 68, 503 (1988).
19. M. Costa, I. Ghiran, C.-K. Peng, A. Nicholson-Weller, and A. L. Goldberger, “Complex dynamics of human red blood cell flickering: Alterations with in vivo aging,” Phys. Rev. E 78, 020901(R) (2008).
20. Y. K. Park, C. A. Best, K. Badizadegana, R. R. Dasaria, M. S. Feld, T. Kuriabovad, M. L. Henlee, A. J. Levine, and G. Popescua, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107, 6731 (2010).
21. T. Shiga, M. Sekiya, N. Maeda, K. Kon, and M. Okazaki, “Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes,” Biochim. Biophys. Acta 814, 289 (1985).
22. C. Pfafferott, G. B. Nash, and H. J. Meiselman, “Red blood cell deformation in shear flow: Effects of internal and external phase viscosity and of in vivo aging,” Biophys. J. 47, 695 (1985).
23. F. H. Bosch, J. M. Werre, L. Schipper, B. Roerdinkholder-Stoelwinder, T. Huls, F. L. A. Willekens, G. Wichers, and M. R. Halie, “Determinants of red blood cell deformability in relation to cell age,” Eur. J. Haematol. 52, 35 (1994).
24. G. R. Cokelet and H. J. Meiselman, “Rheological comparison of hemoglobin solutions and erythrocyte suspensions,” Science 162, 275 (1968).
25. M. Iino and Y. Okuda, “Concentration dependence of Brownian motion and the viscosity of hemoglobin solutions,” Jpn. J. Appl. Phys. 36, 3786 (1997).
26. A. R. Williams and D. R. Morris, “The internal viscosity of the human erythrocyte may determine its lifespan in vivo,” Scand. J. Haematol. 24, 57 (1980).
27. E. T. A. Mohamed, A. E. Kamanyi, M. Pluta, and W. Grill, “Age-dependent acoustic and microelastic properties of red blood cells determined by vector contrast acoustic microscopy,” Microsc. Microanal. 18, 436 (2012).
28. O. Linderkamp and H. J. Meiselman, “Geometric, osmotic, and membrane mechanical properties of density-separated human red cells,” Blood 59, 1121 (1982).
29. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
30. G. B. Nash and H. J. Meiselman, “Red cell and ghost viscoelasticity: Effects of hemoglobin concentration and in vivo aging,” Biophys. J. 43, 63 (1983).
31. S. Weinbaum, J. M. Tarbell, and E. R. Damiano, “The structure and function of the endothelial glycocalyx layer,” Annu. Rev. Biomed. Eng. 9, 121 (2007).
32. R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood-cell membranes,” Biophys. J. 13, 245 (1973).
33. C. Pozrikidis, “Axisymmetric motion of a file of red blood cells through capillaries,” Phys. Fluids 17, 031503 (2005).
34. H. Zhao, A. H. G. Isfahani, L. Olson, and J. B. Freund, “A spectral boundary integral method for flowing blood cells,” J. Comput. Phys. 229, 3726 (2010).
35. J. B. Freund and H. Zhao, “A fast high-resolution boundary integral method for multiple interacting blood cells,” in Computational Hydrodynamics of Capsules and Biological Cells, edited by C. Pozrikidis (Chapman & Hall, Boca Raton, FL, 2010), pp. 71111.
36. S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, 1991).
37. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992).
38. J. B. Freund and M. M. Orescanin, “Cellular flow in a small blood vessel,” J. Fluid Mech. 671, 466 (2011).
39. J. B. Freund and B. Shapiro, “Transport of particles by magnetic forces and cellular blood flow in a model microvessel,” Phys. Fluids 24, 051904 (2012).
40. J. Li, G. Lykotrafitis, M. Dao, and S. Suresh, “Cytoskeletal dynamics of human erythrocyte,” Proc. Natl. Acad. Sci. U.S.A. 104, 4937 (2007).

Data & Media loading...


Article metrics loading...



Small slits between endothelial cells in the spleen are perhaps the smallest blood passages in the body, and red blood cells must deform significantly to pass through them. These slits have been posited to participate in the removal of senescent blood cells from the circulation, a key function of the spleen. One of the effects of red blood cell aging is an increased cytosol viscosity; relaxation time measurements suggest their interior viscosity can increase by up to a factor of 10 toward the end of their normal 120 day circulating lifetime. We employ a boundary integral model to simulate red blood cells as they deform sufficiently to flow through such a small passage, whether in the spleen or in a microfluidic device. Different flow rates and cytosol viscosities show three distinct behaviors. (1) For sufficiently slow flow, the pressure gradient is insufficient to overcome elastic resistance and the cell becomes jammed. (2) For faster flow, the cell passes the slit, though more slowly for higher cytosol viscosity. This can be hypothesized to facilitate recognition of senescent cells. (3) A surprising behavior is observed for high elastic capillary numbers, due either to high velocity or high cytosol viscosity. In this case, the cells infold within the slit, with a finger of low-viscosity plasma pushing deeply into the cell from its upstream side. Such infolding might provide an additional mechanism for jamming, and the sharpness of the resulting features would be expected to promote cell degradation. Linear analysis of a model system shows a similar instability, which is analyzed in regard to the cell flow. This linear analysis also suggests a similar instability for unphysiologically low cytosol viscosity. Simulations confirm that a similar infolding also occurs in this case, which intriguingly suggests that normal cytosol viscosities are in a range that is protective against such deformations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd