Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Schumm and H. Khan, “Experimental study of channel patterns,” Geol. Soc. Am. Bull. 83, 17551770 (1972).[1755:ESOCP]2.0.CO;2
2. S. Ikeda, G. Parker, and K. Sawai, “Bend theory of river meanders. Part 1. Linear developmentJ. Fluid Mech. 112, 363377 (1981).
3. A. Ward, “Yardangs on Mars: Evidence of recent wind erosion,” J. Geophys. Res., [Solid Earth] 84, 81478166, doi:10.1029/JB084iB14p08147 (1979).
4. A. Ward and R. Greeley, “Evolution of the yardangs at Rogers Lake, California,” Geol. Soc. Am. Bull. 95, 829837 (1984).<829:EOTYAR>2.0.CO;2
5. A. Scheidegger, “A physical theory of the formation of hoodoos,” Pure Appl. Geophys. 41, 101106 (1958).
6. S. Wang, “Coastal hoodoos,” Encyclopedia of Coastal Science (Springer, Netherlands, 2005), pp. 260262.
7. P. K. Shah, “Pathophysiology of coronary thrombosis: Role of plaque rupture and plaque erosion,” Prog. Cardiovasc. Dis. 44, 357368 (2002).
8. H. C. Groen, F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, C. Yuan, and J. J. Wentzel, “Plaque rupture in the carotid artery is localized at the high shear stress region: A case report,” Stroke 38, 23792381 (2007).
9. C. Picioreanu, M. C. van Loosdrecht, and J. J. Heijnen, “Two-dimensional model of biofilm detachment caused by internal stress from liquid flow,” Biotechnol. Bioeng. 72, 205218 (2001).<205::AID-BIT9>3.0.CO;2-L
10. G. Nanz and L. E. Camilletti, “Modeling of chemical-mechanical polishing: A review,” IEEE Trans. Semiconduct. Manuf. 8, 382389 (1995).
11. S. Gupta, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis (Elsevier, Amsterdam, 2003).
12. L. Ristroph, M. Moore, S. Childress, M. Shelley, and J. Zhang, “Sculpting of an erodible body by flowing water,” Proc. Natl. Acad. Sci. U.S.A. 109, 1960619609 (2012).
13. H. Helmholtz, “Über diskontinuierliche FlüssigkeitsbewegungenPhilos. Mag. 36, 337346 (1868).
14. G. Kirchhoff, “Zur Theorie freier FlüssigkeitsstrahlenJ. Reine Angew. Math. 70, 289298 (1869).
15. G. Parker and N. Izumi, “Purely erosional cyclic and solitary steps created by flow over a cohesive bed,” J. Fluid Mech. 419, 203238 (2000).
16. P.-Y. Lagrée, “Erosion and sedimentation of a bump in fluvial flow,” C. R. Acad. Sci., Ser. IIB Mech. 328, 869874 (2000).
17. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1960).
18. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (Oxford University Press, New York, 1997).
19. V. V. Sychëv, A. I. Ruban, V. V. Sychev, and G. L. Korolev, Asymptotic Theory of Separated Flows (Cambridge University Press, Cambridge, 1998).
20. J. Hureau, E. Brunon, and P. Legallais, “Ideal free streamline flow over a curved obstacle,” J. Comput. Appl. Math. 72, 193214 (1996).
21. S. Alben, M. Shelley, and J. Zhang, “How flexibility induces streamlining in a two-dimensional flow,” Phys. Fluids 16, 16941713 (2004).
22. G. Batchelor, “A proposal concerning laminar wakes behind bluff bodies at large Reynolds number,” J. Fluid Mech. 1, 388 (1956).
23. G. Parkinson and T. Jandali, “A wake source model for bluff body potential flow,” J. Fluid Mech. 40, 577594 (1970).
24. T. Wu, “Cavity and wake flows,” Annu. Rev. Fluid Mech. 4, 243284 (1972).
25. M. Brillouin, “Les surfaces de glissement d'Helmholtz et la résistance des fluides,” Ann. Chim. Phys. 23, 145230 (1911).
26. H. Villat, “Sur la validité des solutions de certains problèmes d'hydrodynamique,” J. Math. Pures Appl. 10, 231290 (1914).
27. T. V. Kármán, “Über laminaire und turbulente Reibung,” Z. Angew. Math. Mech. 1, 233252 (1921).
28. K. Pohlhausen, “Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht,” Z. Angew. Math. Mech. 1, 252268 (1921).
29. M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations,” Trans. Am. Math. Soc. 277, 142 (1983).
30. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999), Vol. 3.
31. V. M. Falkner and S. W. Skan, “Solutions of the boundary layer equations,” Philos. Mag. 12, 865896 (1931).
32.Here we normalize time by , where cm/hr for the experiments, as opposed to normalizing by tf. The quantity t* estimates the vanishing time in the case of no erosion on the backside of the body, allowing a more faithful comparison between the experimental and simulated front evolution.
33. S. Vogel, “Drag and reconfiguration of broad leaves in high winds,” J. Exp. Bot. 40, 941948 (1989).
34. S. Alben, M. Shelley, and J. Zhang, “Drag reduction through self-similar bending of a flexible body,” Nature (London) 420, 479481 (2002).
35. E. Achenbach, “Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106,” J. Fluid Mech. 34, 625639 (1968).
36. W. P. Graebel, Engineering Fluid Mechanics (Taylor and Francis, New York, 2001).
37. F. Engelund and J. Fredsoe, “Sediment ripples and dunes,” Annu. Rev. Fluid Mech. 14, 1337 (1982).
38. A. Fowler, “Dunes and drumlins,” Geomorphological Fluid Mechanics (Springer, Berlin, 2001), pp. 430454.
39. F. Charru, B. Andreotti, and P. Claudin, “Sand ripples and dunes,” Annu. Rev. Fluid Mech. 45, 469493 (2013).
40. K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for sand dunes,” Phys. Rev. Lett. 88, 054301 (2002).
41. K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for aeolian sand dunes,” Phys. Rev. E 66, 031302 (2002).
42. P.-Y. Lagrée, “A triple deck model of ripple formation and evolution,” Phys. Fluids 15, 2355 (2003).
43. J. T. Hack, “Dynamic equilibrium and landscape evolution,” Theories of Landform Development (State University of New York, 1975), pp. 87102.
44. O. Devauchelle, A. Petroff, A. Lobkovsky, and D. Rothman, “Longitudinal profile of channels cut by springs,” J. Fluid Mech. 667, 3847 (2011).
45. D. Burbank, A. Blythe, J. Putkonen, B. Pratt-Sitaula, E. Gabet, M. Oskin, A. Barros, and T. Ojha, “Decoupling of erosion and precipitation in the Himalayas,” Nature (London) 426, 652655 (2003).
46. A. Matmon, P. Bierman, J. Larsen, S. Southworth, M. Pavich, and M. Caffee, “Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains,” Geology 31, 155158 (2003).<0155:TASURO>2.0.CO;2
47. R. Camassa, R. M. McLaughlin, M. N. J. Moore, and A. Vaidya, “Brachistochrones in potential flow and the connection to Darwin's theorem,” Phys. Lett. A 372, 67426749 (2008).
48. V. Sychev, “Laminar separation,” Fluid Dyn. 7, 407417 (1972).
49. R. Meyer, “A view of the triple deck,” SIAM J. Appl. Math. 43, 639663 (1983).
50. T. Hou, J. Lowengrub, and M. Shelley, “Removing the stiffness from interfacial flows with surface tension,” J. Comput. Phys. 114, 312338 (1994).

Data & Media loading...


Article metrics loading...



Erosion of solid material by flowing fluids plays an important role in shaping landforms, and in this natural context is often dictated by processes of high complexity. Here, we examine the coupled evolution of solid shape and fluid flow within the idealized setting of a cylindrical body held against a fast, unidirectional flow, and eroding under the action of fluid shear stress. Experiments and simulations both show self-similar evolution of the body, with an emerging quasi-triangular geometry that is an attractor of the shape dynamics. Our fluid erosion model, based on Prandtl boundary layer theory, yields a scaling law that accurately predicts the body's vanishing rate. Further, a class of exact solutions provides a partial prediction for the body's terminal form as one with a leading surface of uniform shear stress. Our simulations show this predicted geometry to emerge robustly from a range of different initial conditions, and allow us to explore its local stability. The sharp, faceted features of the terminal geometry defy the intuition of erosion as a globally smoothing process.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd