1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Self-similar evolution of a body eroding in a fluid flow
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/11/10.1063/1.4829644
1.
1. S. Schumm and H. Khan, “Experimental study of channel patterns,” Geol. Soc. Am. Bull. 83, 17551770 (1972).
http://dx.doi.org/10.1130/0016-7606(1972)83[1755:ESOCP]2.0.CO;2
2.
2. S. Ikeda, G. Parker, and K. Sawai, “Bend theory of river meanders. Part 1. Linear developmentJ. Fluid Mech. 112, 363377 (1981).
http://dx.doi.org/10.1017/S0022112081000451
3.
3. A. Ward, “Yardangs on Mars: Evidence of recent wind erosion,” J. Geophys. Res., [Solid Earth] 84, 81478166, doi:10.1029/JB084iB14p08147 (1979).
http://dx.doi.org/10.1029/JB084iB14p08147
4.
4. A. Ward and R. Greeley, “Evolution of the yardangs at Rogers Lake, California,” Geol. Soc. Am. Bull. 95, 829837 (1984).
http://dx.doi.org/10.1130/0016-7606(1984)95<829:EOTYAR>2.0.CO;2
5.
5. A. Scheidegger, “A physical theory of the formation of hoodoos,” Pure Appl. Geophys. 41, 101106 (1958).
http://dx.doi.org/10.1007/BF01981864
6.
6. S. Wang, “Coastal hoodoos,” Encyclopedia of Coastal Science (Springer, Netherlands, 2005), pp. 260262.
7.
7. P. K. Shah, “Pathophysiology of coronary thrombosis: Role of plaque rupture and plaque erosion,” Prog. Cardiovasc. Dis. 44, 357368 (2002).
http://dx.doi.org/10.1053/pcad.2002.123473
8.
8. H. C. Groen, F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, C. Yuan, and J. J. Wentzel, “Plaque rupture in the carotid artery is localized at the high shear stress region: A case report,” Stroke 38, 23792381 (2007).
http://dx.doi.org/10.1161/STROKEAHA.107.484766
9.
9. C. Picioreanu, M. C. van Loosdrecht, and J. J. Heijnen, “Two-dimensional model of biofilm detachment caused by internal stress from liquid flow,” Biotechnol. Bioeng. 72, 205218 (2001).
http://dx.doi.org/10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L
10.
10. G. Nanz and L. E. Camilletti, “Modeling of chemical-mechanical polishing: A review,” IEEE Trans. Semiconduct. Manuf. 8, 382389 (1995).
http://dx.doi.org/10.1109/66.475179
11.
11. S. Gupta, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis (Elsevier, Amsterdam, 2003).
12.
12. L. Ristroph, M. Moore, S. Childress, M. Shelley, and J. Zhang, “Sculpting of an erodible body by flowing water,” Proc. Natl. Acad. Sci. U.S.A. 109, 1960619609 (2012).
http://dx.doi.org/10.1073/pnas.1212286109
13.
13. H. Helmholtz, “Über diskontinuierliche FlüssigkeitsbewegungenPhilos. Mag. 36, 337346 (1868).
14.
14. G. Kirchhoff, “Zur Theorie freier FlüssigkeitsstrahlenJ. Reine Angew. Math. 70, 289298 (1869).
http://dx.doi.org/10.1515/crll.1869.70.289
15.
15. G. Parker and N. Izumi, “Purely erosional cyclic and solitary steps created by flow over a cohesive bed,” J. Fluid Mech. 419, 203238 (2000).
http://dx.doi.org/10.1017/S0022112000001403
16.
16. P.-Y. Lagrée, “Erosion and sedimentation of a bump in fluvial flow,” C. R. Acad. Sci., Ser. IIB Mech. 328, 869874 (2000).
http://dx.doi.org/10.1016/S1620-7742(00)01269-1
17.
17. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1960).
18.
18. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (Oxford University Press, New York, 1997).
19.
19. V. V. Sychëv, A. I. Ruban, V. V. Sychev, and G. L. Korolev, Asymptotic Theory of Separated Flows (Cambridge University Press, Cambridge, 1998).
20.
20. J. Hureau, E. Brunon, and P. Legallais, “Ideal free streamline flow over a curved obstacle,” J. Comput. Appl. Math. 72, 193214 (1996).
http://dx.doi.org/10.1016/0377-0427(95)00272-3
21.
21. S. Alben, M. Shelley, and J. Zhang, “How flexibility induces streamlining in a two-dimensional flow,” Phys. Fluids 16, 16941713 (2004).
http://dx.doi.org/10.1063/1.1668671
22.
22. G. Batchelor, “A proposal concerning laminar wakes behind bluff bodies at large Reynolds number,” J. Fluid Mech. 1, 388 (1956).
http://dx.doi.org/10.1017/S0022112056000238
23.
23. G. Parkinson and T. Jandali, “A wake source model for bluff body potential flow,” J. Fluid Mech. 40, 577594 (1970).
http://dx.doi.org/10.1017/S0022112070000320
24.
24. T. Wu, “Cavity and wake flows,” Annu. Rev. Fluid Mech. 4, 243284 (1972).
http://dx.doi.org/10.1146/annurev.fl.04.010172.001331
25.
25. M. Brillouin, “Les surfaces de glissement d'Helmholtz et la résistance des fluides,” Ann. Chim. Phys. 23, 145230 (1911).
26.
26. H. Villat, “Sur la validité des solutions de certains problèmes d'hydrodynamique,” J. Math. Pures Appl. 10, 231290 (1914).
27.
27. T. V. Kármán, “Über laminaire und turbulente Reibung,” Z. Angew. Math. Mech. 1, 233252 (1921).
http://dx.doi.org/10.1002/zamm.19210010401
28.
28. K. Pohlhausen, “Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht,” Z. Angew. Math. Mech. 1, 252268 (1921).
http://dx.doi.org/10.1002/zamm.19210010402
29.
29. M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations,” Trans. Am. Math. Soc. 277, 142 (1983).
http://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
30.
30. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999), Vol. 3.
31.
31. V. M. Falkner and S. W. Skan, “Solutions of the boundary layer equations,” Philos. Mag. 12, 865896 (1931).
http://dx.doi.org/10.1080/14786443109461870
32.
32.Here we normalize time by , where cm/hr for the experiments, as opposed to normalizing by tf. The quantity t* estimates the vanishing time in the case of no erosion on the backside of the body, allowing a more faithful comparison between the experimental and simulated front evolution.
33.
33. S. Vogel, “Drag and reconfiguration of broad leaves in high winds,” J. Exp. Bot. 40, 941948 (1989).
http://dx.doi.org/10.1093/jxb/40.8.941
34.
34. S. Alben, M. Shelley, and J. Zhang, “Drag reduction through self-similar bending of a flexible body,” Nature (London) 420, 479481 (2002).
http://dx.doi.org/10.1038/nature01232
35.
35. E. Achenbach, “Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106,” J. Fluid Mech. 34, 625639 (1968).
http://dx.doi.org/10.1017/S0022112068002120
36.
36. W. P. Graebel, Engineering Fluid Mechanics (Taylor and Francis, New York, 2001).
37.
37. F. Engelund and J. Fredsoe, “Sediment ripples and dunes,” Annu. Rev. Fluid Mech. 14, 1337 (1982).
http://dx.doi.org/10.1146/annurev.fl.14.010182.000305
38.
38. A. Fowler, “Dunes and drumlins,” Geomorphological Fluid Mechanics (Springer, Berlin, 2001), pp. 430454.
39.
39. F. Charru, B. Andreotti, and P. Claudin, “Sand ripples and dunes,” Annu. Rev. Fluid Mech. 45, 469493 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140806
40.
40. K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for sand dunes,” Phys. Rev. Lett. 88, 054301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.054301
41.
41. K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for aeolian sand dunes,” Phys. Rev. E 66, 031302 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.031302
42.
42. P.-Y. Lagrée, “A triple deck model of ripple formation and evolution,” Phys. Fluids 15, 2355 (2003).
http://dx.doi.org/10.1063/1.1588305
43.
43. J. T. Hack, “Dynamic equilibrium and landscape evolution,” Theories of Landform Development (State University of New York, 1975), pp. 87102.
44.
44. O. Devauchelle, A. Petroff, A. Lobkovsky, and D. Rothman, “Longitudinal profile of channels cut by springs,” J. Fluid Mech. 667, 3847 (2011).
http://dx.doi.org/10.1017/S0022112010005264
45.
45. D. Burbank, A. Blythe, J. Putkonen, B. Pratt-Sitaula, E. Gabet, M. Oskin, A. Barros, and T. Ojha, “Decoupling of erosion and precipitation in the Himalayas,” Nature (London) 426, 652655 (2003).
http://dx.doi.org/10.1038/nature02187
46.
46. A. Matmon, P. Bierman, J. Larsen, S. Southworth, M. Pavich, and M. Caffee, “Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains,” Geology 31, 155158 (2003).
http://dx.doi.org/10.1130/0091-7613(2003)031<0155:TASURO>2.0.CO;2
47.
47. R. Camassa, R. M. McLaughlin, M. N. J. Moore, and A. Vaidya, “Brachistochrones in potential flow and the connection to Darwin's theorem,” Phys. Lett. A 372, 67426749 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.06.093
48.
48. V. Sychev, “Laminar separation,” Fluid Dyn. 7, 407417 (1972).
http://dx.doi.org/10.1007/BF01209044
49.
49. R. Meyer, “A view of the triple deck,” SIAM J. Appl. Math. 43, 639663 (1983).
http://dx.doi.org/10.1137/0143044
50.
50. T. Hou, J. Lowengrub, and M. Shelley, “Removing the stiffness from interfacial flows with surface tension,” J. Comput. Phys. 114, 312338 (1994).
http://dx.doi.org/10.1006/jcph.1994.1170
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/11/10.1063/1.4829644
Loading
/content/aip/journal/pof2/25/11/10.1063/1.4829644
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/11/10.1063/1.4829644
2013-11-13
2014-07-26

Abstract

Erosion of solid material by flowing fluids plays an important role in shaping landforms, and in this natural context is often dictated by processes of high complexity. Here, we examine the coupled evolution of solid shape and fluid flow within the idealized setting of a cylindrical body held against a fast, unidirectional flow, and eroding under the action of fluid shear stress. Experiments and simulations both show self-similar evolution of the body, with an emerging quasi-triangular geometry that is an attractor of the shape dynamics. Our fluid erosion model, based on Prandtl boundary layer theory, yields a scaling law that accurately predicts the body's vanishing rate. Further, a class of exact solutions provides a partial prediction for the body's terminal form as one with a leading surface of uniform shear stress. Our simulations show this predicted geometry to emerge robustly from a range of different initial conditions, and allow us to explore its local stability. The sharp, faceted features of the terminal geometry defy the intuition of erosion as a globally smoothing process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/11/1.4829644.html;jsessionid=ov2lb71nr8ko.x-aip-live-02?itemId=/content/aip/journal/pof2/25/11/10.1063/1.4829644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-similar evolution of a body eroding in a fluid flow
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/11/10.1063/1.4829644
10.1063/1.4829644
SEARCH_EXPAND_ITEM