1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/25/12/10.1063/1.4832857
1.
1. R. W. Blake, Fish Locomotion (Cambridge University Press, Cambridge, 1983).
2.
2. J. J. Videler, Fish Swimming (Chapman and Hall, New York, 1993).
3.
3. A. K. Brodsky, The Evolution of Insect Flight (Oxford University Press, Oxford, 1994).
4.
4. S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206, 29792987 (2003).
http://dx.doi.org/10.1242/jeb.00523
5.
5. S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending,” J. Exp. Biol. 206, 29892997 (2003).
http://dx.doi.org/10.1242/jeb.00524
6.
6. R. J. Wootton, “Invertebrate paraxial locomotory appendages: Design, deformation and control,” J. Exp. Biol. 202, 33333345 (1999).
7.
7. F. E. Fish and G. V. Lauder, “Passive and active flow control by swimming fishes and mammals,” Annu. Rev. Fluid Mech. 38, 193224 (2006).
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092201
8.
8. W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of Low Reynolds Number Flyers (Cambridge University Press, Cambridge, 2008).
9.
9. W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C.-K. Kang, C. E. S. Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics and aeroelasticity,” Prog. Aerosp. Sci. 46, 284327 (2010).
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
10.
10. R. J. Wootton, R. C. Herbert, P. G. Young, and K. E. Evans, “Approaches to structural modeling of insect wings,” Philos. Trans. R. Soc. London, Ser. B 358, 15771587 (2003).
http://dx.doi.org/10.1098/rstb.2003.1351
11.
11. S. Alben, P. G. Madden, and G. V. Lauder, “The mechanics of active fin-shape control in ray-finned fishes,” J. R. Soc., Interface 4, 243256 (2007).
http://dx.doi.org/10.1098/rsif.2006.0181
12.
12. M. S. Triantafyllou, G. S. Triantafyllou, and R. Gopalkrishnan, “Wake mechanics for thrust generation in oscillating foils,” Phys. Fluids 3, 28352837 (1991).
http://dx.doi.org/10.1063/1.858173
13.
13. J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Triantafyllou, “Oscillating foils of high propulsive efficiency,” J. Fluid Mech. 360, 4172 (1998).
http://dx.doi.org/10.1017/S0022112097008392
14.
14. N. Vandenberghe, J. Zhang, and S. Childress, “Symmetry breaking leads to forward flapping flight,” J. Fluid Mech. 506, 147155 (2004).
http://dx.doi.org/10.1017/S0022112004008468
15.
15. N. Vandenberghe, S. Childress, and J. Zhang, “On unidirectional flight of a free flapping wing,” Phys. Fluids 18, 014102 (2006).
http://dx.doi.org/10.1063/1.2148989
16.
16. R. Godoy-Diana, J.-L. Aider, and J. E. Wesfreid, “Transitions in the wake of a flapping foil,” Phys. Rev. E 77, 016308 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.016308
17.
17. J. H. Buchholz and A. J. Smits, “The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel,” J. Fluid Mech. 603, 331365 (2008).
http://dx.doi.org/10.1017/S0022112008000906
18.
18. M. J. Lighthill, “Note on the swimming of slender fish,” J. Fluid Mech. 9, 305317 (1960).
http://dx.doi.org/10.1017/S0022112060001110
19.
19. T. Y.-T. Wu, “Swimming of a waving plate,” J. Fluid Mech. 10, 321344 (1961).
http://dx.doi.org/10.1017/S0022112061000949
20.
20. J.-Y. Cheng, L.-X. Zhuang, and B.-G. Tong, “Analysis of swimming three-dimensional waving plates,” J. Fluid Mech. 232, 341355 (1991).
http://dx.doi.org/10.1017/S0022112091003713
21.
21. Z. J. Wang, “Vortex shedding and frequency selection in flapping fight,” J. Fluid Mech. 410, 323341 (2000).
http://dx.doi.org/10.1017/S0022112099008071
22.
22. Z. J. Wang, “Two dimensional mechanism for insect hovering,” Phys. Rev. Lett. 85, 2216 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2216
23.
23. H. Dong, R. Mittal, and F. M. Najjar, “Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils,” J. Fluid Mech. 566, 309343 (2006).
http://dx.doi.org/10.1017/S002211200600190X
24.
24. J. Carling, T. L. Williams, and G. Bowtell, “Self-propelled anguilliform swimming: Simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion,” J. Exp. Biol. 201 (1998).
25.
25. S. Alben and M. Shelley, “Coherent locomotion as an attracting state for a free flapping body,” Proc. Natl Acad. Sci. U.S.A. 102, 11163 (2005).
http://dx.doi.org/10.1073/pnas.0505064102
26.
26. S. Kern and P. Koumoutsakos, “Simulations of optimized anguilliform swimming,” J. Exp. Biol. 209, 48414857 (2006).
http://dx.doi.org/10.1242/jeb.02526
27.
27. X.-Y. Lu and Q. Liao, “Dynamic responses of a two-dimensional flapping foil motion,” Phys. Fluids 18, 098104 (2006).
http://dx.doi.org/10.1063/1.2357733
28.
28. X. Zhang, S. Z. Ni, S. Z. Wang, and G. W. He, “Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil,” Phys. Fluids 21, 103302 (2009).
http://dx.doi.org/10.1063/1.3251045
29.
29. I. Borazjani and F. Sotiropoulos, “On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming,” J. Exp. Biol. 213, 89107 (2010).
http://dx.doi.org/10.1242/jeb.030932
30.
30. Q. Zhu, “Optimal frequency for flow energy harvesting of a flapping foil,” J. Fluid Mech. 675, 495517 (2011).
http://dx.doi.org/10.1017/S0022112011000334
31.
31. S. Heathcote and I. Gursul, “Flexible flapping airfoil propulsion at low Reynolds numbers,” AIAA J. 45, 10661079 (2007).
http://dx.doi.org/10.2514/1.25431
32.
32. S. Heathcote, Z. Wang, and I. Gursul, “Effect of spanwise flexibility on flapping wing propulsion,” J. Fluids Struct. 24, 183199 (2008).
http://dx.doi.org/10.1016/j.jfluidstructs.2007.08.003
33.
33. S. Michelin and S. G. L. Smith, “Resonance and propulsion performance of a heaving flexible wing,” Phys. Fluids 21, 071902 (2009).
http://dx.doi.org/10.1063/1.3177356
34.
34. J. D. Eldredge, J. Toomey, and A. Medina, “On the roles of chord-wise flexibility in a flapping wing with hovering kinematics,” J. Fluid Mech. 659, 94115 (2010).
http://dx.doi.org/10.1017/S0022112010002363
35.
35. P. J. S. A. Ferreira de Sousa and J. J. Allen, “Thrust efficiency of harmonically oscillating flexible flat plates,” J. Fluid Mech. 674, 4366 (2011).
http://dx.doi.org/10.1017/S0022112010006373
36.
36. C.-K. Kang, H. Aono, C. E. S. Cesnik, and W. Shyy, “Effects of flexibility on the aerodynamic performance of flapping wings,” J. Fluid Mech. 689, 3274 (2011).
http://dx.doi.org/10.1017/jfm.2011.428
37.
37. T. Y.-T. Wu, “On theoretical modeling of aquatic and aerial animal locomotion,” Adv. Appl. Mech. 38, 291353 (2002).
http://dx.doi.org/10.1016/S0065-2156(02)80105-3
38.
38. E. D. Tytell, C. Y. Hsu, T. L. Williams, A. H. Cohen, and L. J. Fauci, “Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming,” Proc. Natl Acad. Sci. U.S.A. 107, 19832 (2010).
http://dx.doi.org/10.1073/pnas.1011564107
39.
39. S. E. Spagnolie, L. Moret, M. J. Shelley, and J. Zhang, “Surprising behaviors in flapping locomotion with passive pitching,” Phys. Fluids 22, 041903 (2010).
http://dx.doi.org/10.1063/1.3383215
40.
40. J. Zhang, N.-S. Liu, and X.-Y. Lu, “Locomotion of a passively flapping flat plate,” J. Fluid Mech. 659, 4368 (2010).
http://dx.doi.org/10.1017/S0022112010002387
41.
41. L. Zhu and C. S. Peskin, “Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method,” J. Comput. Phys. 179, 452468 (2002).
http://dx.doi.org/10.1006/jcph.2002.7066
42.
42. B. S. H. Connell and D. K. P. Yue, “Flapping dynamics of a flag in a uniform stream,” J. Fluid Mech. 581, 3367 (2007).
http://dx.doi.org/10.1017/S0022112007005307
43.
43. C. S. Peskin, “The immersed boundary method,” Acta Numer. 11, 479517 (2002).
http://dx.doi.org/10.1017/S0962492902000077
44.
44. R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech. 37, 239261 (2005).
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
45.
45. D. Goldstein, R. Handler, and L. Sirovich, “Modeling a no slip flow boundary with an external force field,” J. Comput. Phys. 105, 354366 (1993).
http://dx.doi.org/10.1006/jcph.1993.1081
46.
46. W.-X. Huang, S. J. Shin, and H. J. Sung, “Simulation of flexible filaments in a uniform flow by the immersed boundary method,” J. Comput. Phys. 226, 22062228 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.07.002
47.
47. W.-X. Huang and H. J. Sung, “Three-dimensional simulation of a flapping flag in a uniform flow,” J. Fluid Mech. 653, 301336 (2010).
http://dx.doi.org/10.1017/S0022112010000248
48.
48. T. Gao and X.-Y. Lu, “Insect normal hovering flight in ground effect,” Phys. Fluids 20, 087101 (2008).
http://dx.doi.org/10.1063/1.2958318
49.
49. F.-B. Tian, H. Luo, L. Zhu, and X.-Y. Lu, “Coupling modes of three filaments in side-by-side arrangement,” Phys. Fluids 23, 111903 (2011).
http://dx.doi.org/10.1063/1.3659892
50.
50. S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. 30, 329364 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
51.
51. C. K. Aidun, Y. Lu, and E.-J. Ding, “Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation,” J. Fluid Mech. 373, 287311 (1998).
http://dx.doi.org/10.1017/S0022112098002493
52.
52. Z. Xia, K. W. Connington, S. Rapaka, P. Yue, J. J. Feng, and S. Chen, “Flow patterns in the sedimentation of an elliptical particle,” J. Fluid Mech. 625, 249272 (2009).
http://dx.doi.org/10.1017/S0022112008005521
53.
53. Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice boltzmann method,” Phys. Rev. E 65, 046308 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.046308
54.
54. Y. Cheng and J. Li, “Introducing unsteady non-uniform source terms into the lattice Boltzmann model,” Int. J. Numer. Methods Fluids 56, 629641 (2008).
http://dx.doi.org/10.1002/fld.1543
55.
55. D. Yu, R. Mei, and W. Shyy, “A multi-block lattice Boltzmann method for viscous fluid flows,” Int. J. Numer. Methods Fluids 39, 99120 (2002).
http://dx.doi.org/10.1002/fld.280
56.
56. Y. Peng, C. Shu, Y. T. Chew, X. D. Niu, and X.-Y. Lu, “Application of multi-block approach in the immersed boundary¨clattice Boltzmann method for viscous fluid flows,” J. Comput. Phys. 218, 460478 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.02.017
57.
57. C. Pacoste, “Co-rotational flat facet triangular elements for shell instability analyses,” Comput. Methods Appl. Mech. Eng. 156, 75110 (1998).
http://dx.doi.org/10.1016/S0045-7825(98)80004-2
58.
58. J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability (Springer-Verlag, New York, 2001).
59.
59. B. Yin and H. Luo, “Effect of wing inertia on hovering performance of flexible flapping wings,” Phys. Fluids 22, 111902 (2010).
http://dx.doi.org/10.1063/1.3499739
60.
60. F.-B. Tian, H. Luo, L. Zhu, J. C. Liao, and X.-Y. Lu, “An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments,” J. Comput. Phys. 230, 72667283 (2011).
http://dx.doi.org/10.1016/j.jcp.2011.05.028
61.
61. B. Richard, “The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat,” J. Exp. Biol. 35, 109133 (1958).
62.
62. C. P. Ellington, “The aerodynamics of hovering insect flight. II. Morphological parameters,” Philos. Trans. R. Soc. London, Ser. B 305, 1740 (1984).
http://dx.doi.org/10.1098/rstb.1984.0050
63.
63. C. P. Ellington, “The aerodynamics of hovering insect flight. III. Kinematics,” Philos. Trans. R. Soc. London, Ser. B 305, 4178 (1984).
http://dx.doi.org/10.1098/rstb.1984.0051
64.
64. F. E. Fish, “Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus),” J. Exp. Biol. 185, 179193 (1993).
65.
65. G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature (London) 425, 707711 (2003).
http://dx.doi.org/10.1038/nature02000
66.
66. S. A. Combes and T. L. Daniel, “Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta,” J. Exp. Biol. 206, 29993006 (2003).
http://dx.doi.org/10.1242/jeb.00502
67.
67. J.-S. Chen, J.-Y. Chen, and Y.-F. Chou, “On the natural frequencies and mode shapes of dragonfly wings,” J. Sound Vib. 313, 643654 (2008).
http://dx.doi.org/10.1016/j.jsv.2007.11.056
68.
68. S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50, 13231334 (2010).
http://dx.doi.org/10.1007/s11340-010-9411-x
69.
69. M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swimming,” Annu. Rev. Fluid Mech. 32, 3353 (2000).
http://dx.doi.org/10.1146/annurev.fluid.32.1.33
70.
70. D. Ishihara, T. Horie, and M. Denda, “A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight,” J. Exp. Biol. 212, 110 (2009).
http://dx.doi.org/10.1242/jeb.020404
71.
71. W. T. Thomson, Theory of Vibration with Applications (Prentice-Hall, Englewood Cliffs, NJ, 1981).
72.
72. W. W. Schultz and P. W. Webb, “Power requirements of swimming: Do new methods resolve old questions?Integr. Comp. Biol. 42, 10181025 (2002).
http://dx.doi.org/10.1093/icb/42.5.1018
73.
73. L. Zhu, “Interaction of two tandem deformable bodies in a viscous incompressible flow,” J. Fluid Mech. 635, 455475 (2009).
http://dx.doi.org/10.1017/S0022112009007903
74.
74. S. Bagheri, A. Mazzino, and A. Bottaro, “Spontaneous symmetry breaking of a hinged flapping filament generates lift,” Phys. Rev. Lett. 109, 154502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.154502
75.
75. W. C. Young and R. Budynas, Roark's Formulas for Stress and Strain (McGraw-Hill, New York, 2001).
76.
76. J.-Z. Wu, X.-Y. Lu, and L.-X. Zhuang, “Integral force acting on a body due to local flow structures,” J. Fluid Mech. 576, 265286 (2007).
http://dx.doi.org/10.1017/S0022112006004551
77.
77. G.-J. Li and X.-Y. Lu, “Force and power of flapping plates in a fluid,” J. Fluid Mech. 712, 598613 (2012).
http://dx.doi.org/10.1017/jfm.2012.443
78.
78. K. D. Jones, C. M. Dohring, and M. F. Platzer, “Experimental and computational investigation of the Knoller-Betz effect,” AIAA J. 36, 12401246 (1998).
http://dx.doi.org/10.2514/2.505
79.
79. G. C. Lewin and H. Haj-Hariri, “Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow,” J. Fluid Mech. 492, 339362 (2003).
http://dx.doi.org/10.1017/S0022112003005743
80.
80. S. Vogel, Life in Moving Fluids (Princeton University Press, Princeton, 1994).
81.
81. S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton University Press, Princeton, 1982).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/12/10.1063/1.4832857
Loading
/content/aip/journal/pof2/25/12/10.1063/1.4832857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/12/10.1063/1.4832857
2013-12-02
2015-07-05

Abstract

The locomotion of a flapping flexible plate in a viscous incompressible stationary fluid is numerically studied by an immersed boundary-lattice Boltzmann method for the fluid and a finite element method for the plate. When the leading-edge of the flexible plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Mechanisms underlying the dynamics of the plate are elucidated. Three distinct states of the plate motion are identified and can be described as forward, backward, and irregular. Which state to occur depends mainly on the heaving amplitude and the bending rigidity of the plate. In the forward motion regime, analysis of the dynamic behaviors of the flapping flexible plate indicates that a suitable degree of flexibility can improve the propulsive performance. Moreover, there exist two kinds of vortex streets in the downstream of the plate which are normal and deflected wake. Further the forward motion is compared with the flapping-based locomotion of swimming and flying animals. The results obtained in the present study are found to be consistent with the relevant observations and measurements and can provide some physical insights into the understanding of the propulsive mechanisms of swimming and flying animals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/12/1.4832857.html;jsessionid=1jm29t6g0hrue.x-aip-live-06?itemId=/content/aip/journal/pof2/25/12/10.1063/1.4832857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Locomotion of a flapping flexible plate
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/12/10.1063/1.4832857
10.1063/1.4832857
SEARCH_EXPAND_ITEM