1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Open-loop control of noise amplification in a separated boundary layer flow
Rent:
Rent this article for
USD
10.1063/1.4846916
/content/aip/journal/pof2/25/12/10.1063/1.4846916
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/12/10.1063/1.4846916
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Bump geometry = (), inlet velocity profile (, ) = ( , 0), time-dependent forcing (), steady volume control , and steady wall control .

Image of FIG. 2.
FIG. 2.

Recirculation length as function of Reynolds number. Solid line: steady-state base flow calculated in the present study. Symbols: steady state computations (+) and time-averaged recirculation length of oscillatory flow field (×) obtained by Marquillie and Ehrenstein. 31

Image of FIG. 3.
FIG. 3.

(a) Optimal linear gain at , 400, 500, and 580. (b) Variation of the maximal optimal gain with Reynolds number, and (c) frequency of this maximum.

Image of FIG. 4.
FIG. 4.

(a) Optimal forcing and (b) optimal response at for different frequencies ω. The real part of the streamwise component is shown. The dashed line shows the base flow separating streamline.

Image of FIG. 5.
FIG. 5.

Spatial structure of the divergence-free Gaussian forcing (8) : (a) streamwise and (b) cross-stream components.

Image of FIG. 6.
FIG. 6.

Response to harmonic forcing at , ω = 0.25. (a) Time evolution of the energy of the perturbations. Dashed lines correspond to = 2 × 10−6 and 3 × 10−6. (b) Mean asymptotic energy in the steady-state regime as function of the forcing amplitude . The solid line has a slope 2. (c) Time series of the streamwise perturbation velocity at = 80, = 1, for = 10−7, 10−6, 10−5. (d) Power spectrum of this velocity for forcing amplitudes = 10−7 (dashed-dotted line), = 10−6 (dashed line), = 10−5 (solid line) (arbitrary unit, logarithmic scale).

Image of FIG. 7.
FIG. 7.

Actual response to harmonic forcing = (, ) ω with the particular choice (8) for the spatial structure . Solid line: actual linear gain ; Symbols: linear DNS gain obtained from DNS calculations with small-amplitude forcing. The dashed line indicates for reference the optimal gain (reported from Figure 3 ).

Image of FIG. 8.
FIG. 8.

Response to stochastic forcing at . (a) Time evolution of the perturbation energy . Dashed lines correspond to = 3 × 10−5 and 3 × 10−4. (b) Mean asymptotic energy in the steady-state regime as function of the forcing amplitude . Time series of the streamwise perturbation velocity measured at = 1 and = 80 and 140 for (c) = 10−7 and (d) = 10−5. Power spectrum of the streamwise velocity measured at = 1 and = 80, 100, 120, 140, for (e) = 10−7 and (f) = 10−5. For reference, the thick line shows the (uncontrolled) linear gain (ω) from Figure 7 (arbitrary unit, linear scale).

Image of FIG. 9.
FIG. 9.

Subharmonic instability occurs as a manifestation of nonlinear effects when forcing amplitude is large enough. Amplitude of the stochastic forcing: (a) = 10−7, (b) = 10−5, (c) = 3 × 10−5, (d) = 10−4. Contours of streamwise perturbation velocity, = 2000, . The axes are not to scale.

Image of FIG. 10.
FIG. 10.

Normalized sensitivity of optimal gain to base flow modification in the streamwise direction, , at and frequencies ω = 0.05, 0.15, …0.55. The vertical dashed line is the base flow separatrix. The axes are not to scale.

Image of FIG. 11.
FIG. 11.

Sensitivity of optimal gain to control at and frequencies ω = 0.05, 0.15, …0.55. (a) Normalized streamwise component of the sensitivity to volume control, . Black circles indicate the location of volume control (, ) = (75, 3.5) discussed in the text and in Figure 12 . The axes are not to scale. (b) Normalized sensitivity to wall control, , rescaled for each frequency by the largest point-wise 2 norm on the wall . This maximal value is shown by symbols in the inset (where the solid line is an indicative fit through the data). The grey region shows the streamwise extension of the bump. The dashed line is the base flow separatrix.

Image of FIG. 12.
FIG. 12.

Variation of the optimal gain at when applying at (, ) = (75, 3.5) a steady volume control of amplitude in the streamwise direction. (a) Prediction from sensitivity analysis (SA, red solid line) and nonlinear controlled base flows (NL, blue symbols) at ω = 0.25. The main plot is in logarithmic scale, the inset in linear scale (the sensitivity is a straight line). (b) (ω) for = 0 (thick solid line), = −0.01 (thin solid line), and = −0.02 (dashed line).

Image of FIG. 13.
FIG. 13.

Variation of the optimal gain at when applying vertical wall blowing/suction at the bump summit. (a) Prediction from sensitivity analysis (SA, red solid line) and nonlinear controlled base flows (NL, blue symbols). The main plot is in logarithmic scale and shows that varies exponentially with flow rate. In linear scale (inset), the sensitivity is a straight line. (b) Reduction of (ω) with flow rates = −0.010, −0.035, −0.100.

Image of FIG. 14.
FIG. 14.

Effect of wall suction on harmonic response. Upper line and symbols (reported from Figure 7 ) show the actual gain in the uncontrolled case; lower line and symbols are for wall suction at the bump summit with flow rate = −0.035. Solid lines: linear results ; symbols: from DNS calculations with small-amplitude harmonic forcing.

Image of FIG. 15.
FIG. 15.

Mean asymptotic energy of the perturbations vs. forcing amplitude, at . Open symbols: without control; Filled symbols: with vertical wall suction at the bump summit (flow rate = −0.035). (a) Harmonic forcing at ω = 0.25 (circles) and ω = 0.35 (triangles); (b) stochastic forcing.

Image of FIG. 16.
FIG. 16.

Flow restabilization at in direct numerical simulations with steady vertical wall suction at the bump summit (flow rate = −0.035). (a) Energy of the perturbations (calculated with the final steady-state as reference base flow). (b) Streamwise velocity of the total flow at (, ) = (80, 1). The subcritical flow, stationary for < 0, is perturbed from = 0 with stochastic forcing of amplitude = 3 × 10−4, and control is turned on at = 1000.

Image of FIG. 17.
FIG. 17.

Global linear eigenspectrum at of the uncontrolled flow and of the flow controlled with vertical wall suction at the bump summit with flow rate = −0.015, −0.025, −0.035, −0.040.

Image of FIG. 18.
FIG. 18.

Sensitivity analysis of the most unstable eigenvalues at . (a) Sensitivity of the growth rate of modes 1–9 (Kelvin-Helmholtz branch) to vertical wall control. The dashed line shows the bump summit location. (b) Effect of vertical wall control at the bump summit, as predicted by sensitivity analysis. Red solid lines indicate a flow rate = −0.005. The lower panel is a close-up view of eigenvalues 1–3, comparing sensitivity analysis (SA, red solid lines) and linear stability analysis results for nonlinear base flows controlled with = −0.001 and −0.002 (NL, blue circles).

Image of FIG. 19.
FIG. 19.

(a) and (b) Flow restabilization at in direct numerical simulations with steady vertical wall suction at the bump summit (flow rate = −0.035). Same notations as Figure 16 . The supercritical flow is naturally unsteady, no perturbation is added, and control is turned on at = 1000. Dots correspond to the times of snapshots in Figure 20 .

Image of FIG. 20.
FIG. 20.

Flow restabilization in the supercritical regime, , in DNS with steady vertical wall suction at the bump summit (flow rate = −0.035): contours of vorticity of the total flow at = 0, 500, 1000… 2500. The black dot shows the location of the point (, ) = (80, 1) where the velocity signal of Figure 19 is recorded. The axes are not to scale.

Loading

Article metrics loading...

/content/aip/journal/pof2/25/12/10.1063/1.4846916
2013-12-20
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Open-loop control of noise amplification in a separated boundary layer flow
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/12/10.1063/1.4846916
10.1063/1.4846916
SEARCH_EXPAND_ITEM