1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Evaporation-induced saline Rayleigh convection inside a colloidal droplet
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/4/10.1063/1.4797497
1.
1. H. Erbil, G. McHale, S. Rowan, and M. Newton, “Analysis of evaporating droplets using ellipsoidal cap geometry,” J. Adhes. Sci. Technol. 13, 13751391 (1999).
http://dx.doi.org/10.1163/156856199X00532
2.
2. J. Jing, J. Reed, J. Huang, X. Hu, V. Clarke, J. Edington, D. Housman, T. Anantharaman, E. Huff, B. Mishra, A. S. B. Porter, E. Wolfson, C. Hiort, R. Kantor, C. Aston, and D. Schwartz, “Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 95, 80468051 (1998).
http://dx.doi.org/10.1073/pnas.95.14.8046
3.
3. W. Wang, J. Lin, and D. Schwartz, “Scanning force microscopy of dna molecules elongated by convective fluid flow in an evaporating droplet,” Biophys. J. 75, 513520 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77540-X
4.
4. S. Abramchuk, A. Khokhlov, T. Iwataki, H. Oana, and K. Yoshikawa, “Direct observation of dna molecules in a convection flow of a drying droplet,” Europhys. Lett. 55, 294300 (2001).
http://dx.doi.org/10.1209/epl/i2001-00412-2
5.
5. H. Hu and R. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B 106, 13341344 (2002).
http://dx.doi.org/10.1021/jp0118322
6.
6. R. Deegan, O. Bakajin, T. Dupont, G. Huber, S. Nagel, and T. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature (London) 389, 827829 (1997).
http://dx.doi.org/10.1038/39827
7.
7. K. Uno, K. Hayashi, T. Hayashi, K. Ito, and H. Kitano, “Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces,” Colloid Polym. Sci. 276, 810815 (1998).
http://dx.doi.org/10.1007/s003960050314
8.
8. T. Cuk, S. M. Troian, C. M. Hong, and S. Wagner, “Using convective flow splitting for the direct printing of fine copper lines,” Appl. Phys. Lett. 77, 20632065 (2000).
http://dx.doi.org/10.1063/1.1311954
9.
9. K. Velikov, C. Christova, R. Dullens, and A. Blaaderen, “Layer-by-layer growth of binary colloidal crystals,” Science 296, 106109 (2002).
http://dx.doi.org/10.1126/science.1067141
10.
10. V. X. Nguyen and K. J. Stebe, “Patterning of small particles by a surfactant-enhanced Marangoni-Bénard instability,” Phys. Rev. Lett. 88, 164501164504 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.164501
11.
11. L. Shmuylovich, A. Q. Shen, and H. A. Stone, “Surface morphology of drying latex film: Multiple ring formation,” Langmuir 18, 34413445 (2002).
http://dx.doi.org/10.1021/la011484v
12.
12. S. Maenosono, C. Dushkin, S. Saita, and Y. Yamaguchi, “Growth of a semiconductor nanoparticle ring during the drying of a suspension droplet,” Langmuir 15, 957965 (1999).
http://dx.doi.org/10.1021/la980702q
13.
13. J. S. Tuner, Buoyancy Effects in Fluids (Cambridge University Press, New York, 1979).
14.
14. J. C. Ball, F. Marken, Q. Fulian, J. Wadhawan, A. Blythe, U. Schroder, R. Coompton, S. Bull, and S. Davies, “Voltammetry of electroactive oil droplets. Part II: Comparison of experimental and simulation data for coupled ion and electron insertion processes and evidence for microscale convection,” Electroanalysis 12, 10171025 (2000).
http://dx.doi.org/10.1002/1521-4109(200009)12:13<1017::AID-ELAN1017>3.0.CO;2-7
15.
15. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, New York, 2001).
16.
16. N. Zhang and W. J. Yang, “Natural convection in evaporating minute drops,” J. Heat Transfer 104, 656662 (1982).
http://dx.doi.org/10.1115/1.3245182
17.
17. R. Savino and R. Monti, “Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer,” J. Cryst. Growth 165, 308318 (1996).
http://dx.doi.org/10.1016/0022-0248(96)00151-0
18.
18. K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Meas. Sci. Technol. 15, 11041112 (2004).
http://dx.doi.org/10.1088/0957-0233/15/6/009
19.
19. A. Adamson and A. Gast, Physical Chemistry of Surfaces (John Wiley & Sons, New York, 1997).
20.
20. R. Blossey and A. Bosio, “Contact line deposits on cdna microarrays: A twin-spot effect,” Langmuir 18, 29522954 (2002).
http://dx.doi.org/10.1021/la0114732
21.
21. A. Chai and N. Zhang, “Experimental study of Marangoni-Bénard convection in a liquid layer induced by evaporation,” Exp. Heat Transfer 11, 187205 (1998).
http://dx.doi.org/10.1080/08916159808946561
22.
22. S. Chandra, M. Marzo, Y. Qiao, and P. Tartarini, “Effect of liquid-solid contact angle on droplet evaporation,” Fire Saf. J. 27, 141158 (1996).
http://dx.doi.org/10.1016/S0379-7112(96)00040-9
23.
23. C. F. Chen and T. Su, “Effect of surface tension on the onset of convection in a double-diffusive layer,” Phys. Fluids A 4, 23602367 (1992).
http://dx.doi.org/10.1063/1.858477
24.
24. S. K. Chung and E. H. Trinh, “Containerless protein crystal growth in rotating levitated drops,” J. Cryst. Growth 194, 384397 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00542-9
25.
25. A. Daif, M. Bouaziz, J. Bresson, and M. Grisenti, “Surface temperature of hydrocarbon droplet in evaporation,” J. Thermophys. Heat Transfer 13, 553555 (1999).
http://dx.doi.org/10.2514/2.6479
26.
26. R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E 61, 475485 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.475
27.
27. R. D. Deegan, O. Bakajin, T. Dupont, G. Huber, S. Nagel, and T. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, 756765 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
28.
28. H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: Constant contact angle mode,” Langmuir 18, 26362641 (2002).
http://dx.doi.org/10.1021/la011470p
29.
29. J. Fisher, “Particle convection in an evaporating colloidal droplet,” Langmuir 18, 6067 (2002).
http://dx.doi.org/10.1021/la015518a
30.
30. D. Frenkel, “Playing tricks with designer atom,” Science 296, 6566 (2002).
http://dx.doi.org/10.1126/science.1070865
31.
31. J. P. Hartfield and P. V. Farrell, “Droplet vaporization in a high-pressure gas,” J. Heat Transfer 115, 699706 (1993).
http://dx.doi.org/10.1115/1.2910741
32.
32. J. J. Hegseth, N. Rashidnia, and A. Chai, “Natural convection in droplet evaporation,” Phys. Rev. E 54, 16401644 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.1640
33.
33. B. Sobac and D. Brutin, “Triple-line behavior and wettability controlled by nanocoated substrates: Influence on sessile drop evaporation,” Langmuir 27, 1499915007 (2011).
http://dx.doi.org/10.1021/la203681j
34.
34. B. Sobac and D. Brutin, “Thermal effects of the substrate on water droplet evaporation,” Phys. Rev. E 86, 021602 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021602
35.
35. H. Coleman and W. Steele, Experimentation and Uncertainty Analysis for Engineers (John Wiley & Sons, New York, 1989).
36.
36. J. Park, J. Ryu, B. Koo, S. Lee, and K. H. Kang, “How the change of contact angle occurs for an evaporating droplet: Effect of impurity and attached water films,” Soft Matter 8, 1188911896 (2012).
http://dx.doi.org/10.1039/c2sm26559a
37.
37. R. Farley and R. Schechter, “Retardation of surface velocities by surfactants,” Chem. Eng. Sci. 21, 10791093 (1966).
http://dx.doi.org/10.1016/0009-2509(66)85103-5
38.
38. B. Cuenot, J. Magnaudet, and B. Spennato, “The effects of slightly soluble surfactants on the flow around a spherical bubble,” J. Fluid Mech. 339, 2553 (1997).
http://dx.doi.org/10.1017/S0022112097005053
39.
39. T. Wu and J. Maa, “Surfactant-induced retardation of the thermocapillary flow at a gas/liquid interface,” Int. Commun. Heat Mass Transfer 27, 655666 (2000).
http://dx.doi.org/10.1016/S0735-1933(00)00147-0
40.
40. R. Savino and S. Fico, “Transient Marangoni convection in hanging evaporating drops,” Phys. Fluids 16, 37383754 (2004).
http://dx.doi.org/10.1063/1.1772380
41.
41. H. Hu and R. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir 21, 39723980 (2005).
http://dx.doi.org/10.1021/la0475270
42.
42. T. Klupsch, P. Muhlig, and R. Hilgenfeld, “The distribution of a macromolecular solute within an evaporating drop: an exact analytical solution,” Colloids Surf., A 231, 85102 (2003).
http://dx.doi.org/10.1016/j.colsurfa.2003.06.002
43.
43. C. Eggleton, Y. Pawar, and K. Stebe, “Insoluble surfactants on a drop in an extensional flow: A generation of the stagnated surface limit to deforming interfaces,” J. Fluid Mech. 385, 7999 (1999).
http://dx.doi.org/10.1017/S0022112098004054
44.
44. A. Alizadeh, C. N. de Castro, and W. Wakeham, “The theory of the Taylor dispersion technique for liquid diffusivity measurements,” Int. J. Thermophys. 1, 243284 (1980).
http://dx.doi.org/10.1007/BF00517126
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/4/10.1063/1.4797497
Loading
/content/aip/journal/pof2/25/4/10.1063/1.4797497
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/4/10.1063/1.4797497
2013-04-01
2014-07-24

Abstract

Inside evaporating two-component sessile droplets, a family of the Rayleigh convection exists, driven by salinity gradient formed by evaporation of solvent and solute. In this work, the characteristic of the flow inside an axisymmetric droplet is investigated. A stretched coordinate system is employed to account for the effect of boundary movement. A scaling analysis shows that the flow velocity is proportional to the (salinity) Rayleigh number ( ) at the small-Rayleigh-number limit. A numerical analysis for a hemispherical droplet exhibits the flow velocity is proportional to the non-dimensional number , at high Rayleigh numbers. A self-similar condition is established for the concentration field irrespective of the Rayleigh numbers after a moderate time, and the flow field is invariant with time at this stage. The scaling relation for the high Rayleigh numbers is verified experimentally by using aqueous NaCl droplets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/4/1.4797497.html;jsessionid=1hv0m8y3jkg40.x-aip-live-02?itemId=/content/aip/journal/pof2/25/4/10.1063/1.4797497&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evaporation-induced saline Rayleigh convection inside a colloidal droplet
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/4/10.1063/1.4797497
10.1063/1.4797497
SEARCH_EXPAND_ITEM