Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Mi. Process. 56(1–4), 31 (1999).
2. C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: A review of experimental studies,” Rep. Prog. Phys. 68(12), 2859 (2005).
3. Y. Zhu and S. Granick, “Rate-dependent slip of Newtonian liquid at smooth surfaces,” Phys. Rev. Lett. 87(9), 096105 (2001).
4. Y. Zhu and S. Granick, “Limits of the hydrodynamic no-slip boundary condition,” Phys. Rev. Lett. 88(10), 106102 (2002).
5. E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
6. C. Kunert, J. Harting, and O. I. Vinogradova, “Random-roughness hydrodynamic boundary conditions,” Phys. Rev. Lett. 105(1), 016001 (2010).
7. J.-H. J. Cho, B. M. Law, and F. Rieutord, “Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces,” Phys. Rev. Lett. 92(16), 166102 (2004).
8. F. D. Shields, “Energy and momentum accommodation coefficients on platinum and silver,” J. Chem. Phys. 78(6), 3329 (1983).
9. M. E. Schrader, “Wettability of clean metal surfaces,” J. Colloid Interface Sci. 100(2), 372 (1984).
10. E. Lauga and M. P. Brenner, “Dynamic mechanisms for apparent slip on hydrophobic surfaces,” Phys. Rev. E 70(2), 026311 (2004).
11. S. Granick, “Motions and relaxations of confined liquids,” Science 253(5026), 1374 (1991).
12. V. S. J. Craig, C. Neto, and D. R. M. Williams, “Shear-dependent boundary slip in an aqueous Newtonian liquid,” Phys. Rev. Lett. 87(5), 054504 (2001).
13. R. Pit, H. Hervet, and L. Léger, “Direct experimental evidence of slip in hexadecane: Solid interfaces,” Phys. Rev. Lett. 85(5), 980983 (2000).
14. N. V. Priezjev, “Effect of surface roughness on rate-dependent slip in simple fluids,” J. Chem. Phys. 127(14), 144708 (2007).
15. F. D. Sofos, T. E. Karakasidis, and A. Liakopoulos, “Effects of wall roughness on flow in nanochannels,” Phys. Rev. E 79(2), 026305 (2009).
16. A. Niavarani and N. V. Priezjev, “The effective slip length and vortex formation in laminar flow over a rough surface,” Phys. Fluids 21(5), 052105 (2009).
17. A. Niavarani and N. V. Priezjev, “Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids,” Phys. Rev. E 81(1), 011606 (2010).
18. O. I. Vinogradova and A. V. Belyaev, “Wetting, roughness and flow boundary conditions,” J. Phys.: Condens. Matter 23(18), 184104 (2011).
19. F. Sharipov, “Data on the velocity slip and temperature jump on a gas-solid interface,” J. Phys. Chem. Ref. Data 40(2), 023101 (2011).
20. J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, “Second-order slip laws in microchannels for helium and nitrogen,” Phys. Fluids 15, 2613 (2003).
21. T. Ewart, P. Perrier, I. Graur, and J. G. Méolans, “Tangential momentum accommodation in microtube,” Microfluid. Nanofluid. 3, 689 (2007).
22. P. Perrier, I. A. Graur, T. Ewart, and J. G. Meolans, “Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime,” Phys. Fluids 23(4), 042004 (2011).
23. I. A. Graur, P. Perrier, W. Ghoziani, and J. H. Méolans, “Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel,” Phys. Fluids 21, 102004 (2009).
24. P. E. Suetin, B. T. Porodnov, V. G. Chernjak, and S. F. Borisov, “Poiseuille flow at arbitrary Knudsen numbers and tangential momentum accommodation,” J. Fluid Mech. 60, 581 (1973).
25. B. T. Porodnov, P. E. Suetin, S. F. Borisov, and V. D. Akinshin, “Experimental investigation of rarefied gas flow in different channels,” J. Fluid Mech. 64(03), 417 (1974).
26. C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, “Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts,” Phys. Rev. Lett. 94(5), 056102 (2005).
27. W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature (London) 353, 239 (1991).
28. A. Maali and B. Bhushan, “Slip-length measurement of confined air flow using dynamic atomic force microscopy,” Phys. Rev. E 78(2), 027302 (2008).
29. C. D. F. Honig, J. E. Sader, P. Mulvaney, and W. A. Ducker, “Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope,” Phys. Rev. E 81(5), 056305 (2010).
30. A. P. Bowles and W. A. Ducker, “Gas flow near a smooth plate,” Phys. Rev. E 83(5), 056328 (2011).
31. C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett. 108, 084501 (2012).
32. S. de Man, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi, “Halving the Casimir force with conductive oxides,” Phys. Rev. Lett. 103(4), 040402 (2009).
33. S. de Man, K. Smith, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi, “Casimir force experiments in air: Two birds with one stone,” Int. J. Mod. Phys. A 25(11), 2231 (2010).
34. A. Agrawal and S. V. Prabhu, “Survey on measurement of tangential momentum accommodation coefficient,” J. Vac. Sci. Technol. A 26(4), 634 (2008).
35. Conditions of the type of Eq. (2) can be obtained from the Chapman-Enskog (or similar) approach to solve the Boltzmann equation with an expansion of the distribution function for small Knudsen numbers. Explicit calculations up to second order are given in Ref. 68. A compulsory review of related work can be found in Refs. 66,69.
36. D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, “Velocity boundary condition at solid walls in rarefied gas calculations,” Phys. Rev. E 70(1), 017303 (2004).
37. H. Brenner, “The slow motion of a sphere through a viscous fluid towards a plane surface,” Chem. Eng. Sci. 16(3–4), 242 (1961).
38. The assumption of the creeping flow conditions is valid for small Reynolds number and allows one to neglect all acceleration effects in the fluid. Thus, one may linearize the Stokes equations according to: Eq. (1a) and Eq. (1b), which, for some cases, leads to analytical solutions for the problem.
39. N. Dongari, A. Agrawal, and A. Agrawal, “Analytical solution of gaseous slip flow in long microchannels,” Int. J. Heat Mass Transfer 50(17–18), 3411 (2007).
40. F. Sharipov, “Data on the velocity slip and temperature jump coefficients,” in Proceedings of the 5th Conference of EuroSimE, Thermal and mechanical simulation and experiments in micro-electronics and micro-systems (IEEE, 2004), p. 243.
41. A. S. Berman and W. J. Maegley, “Internal rarefied gas flows with backscattering,” Phys. Fluids 15(5), 772 (1972).
42. C. Cercignani and A. Daneri, “Flow of a rarefied gas between two parallel plates,” J. Appl. Phys. 34(12), 3509 (1963).
43. S. K. Loyalka, N. Petrellis, and T. S. Storvick, “Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accommodation at the surface,” Phys. Fluids 18(9), 1094 (1975).
44. C. R. Lilley and J. E. Sader, “Velocity profile in the Knudsen layer according to the Boltzmann equation,” Proc. R. Soc. London, Ser. A 464(2096), 2015 (2008).
45. O. I. Vinogradova, “Drainage of a thin liquid film confined between hydrophobic surfaces,” Langmuir 11(6), 2213 (1995).
46. E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system,” Phys. Rev. Lett. 90(14), 144501 (2003).
47. C. D. F. Honig and W. A. Ducker, “Effect of molecularly-thin films on lubrication forces and accommodation coefficients in air,” J. Phys. Chem. C 114(47), 20114 (2010).
48. L. Zhu, P. Attard, and C. Neto, “Reliable measurements of interfacial slip by colloid probe atomic force microscopy. I. Mathematical modeling,” Langmuir 27(11), 6701 (2011).
49. S. de Man, K. Heeck, and D. Iannuzzi, “Halving the Casimir force with conductive oxides: Experimental details,” Phys. Rev. A 82(6), 062512 (2010).
50. S. de Man, K. Heeck, and D. Iannuzzi, “No anomalous scaling in electrostatic calibrations for Casimir force measurements,” Phys. Rev. A 79(2), 024102 (2009).
51. W. A. Ducker and R. F. Cook, “Rapid measurement of static and dynamic surface forces,” Appl. Phys. Lett. 56(24), 2408 (1990).
52. The actual sequence of gases was Ne, CO2, N2, Ar, He, Kr, and C2H6. Only media with purity better than 99.9% (C2H699.7%) have been used.
53. E. Lifshitz, “The theory of molecular attractive forces between solids,” JETP 2(73), 334 (1956).
54. V. A. Parsegian, Van der Waals Forces (Cambridge University Press, New York, 2006).
55. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 2002).
56. E. W. Lemmon, M. L. Huber, and M. O. McLinden, NIST Standard Reference Database 23, Reference Fluid and Thermodynamic Properties, Version 9, 2010.
57. J. J. Hurly and M. R. Moldover, “Ab initio values of the thermophysical properties of helium as standards,” J. Res. Natl. Inst. Stand. Technol. 105(5), 667 (2000).
58. J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the noble gases in the temperature range 25–700°C,” J. Chem. Phys. 56(8), 4119 (1972).
59. B. Younglove and H. J. M. Hanley, “The viscosity and thermal conductivity coefficients of gaseous and liquid argon,” J. Phys. Chem. Ref. Data 15(4), 1323 (1986).
60. P. J. van Zwol, G. Palasantzas, M. van de Schootbrugge, J. T. M. de Hosson, and V. S. J. Craig, “Roughness of microspheres for force measurements,” Langmuir 24(14), 7528 (2008).
61. R. W. Barber, Y. Sun, X. J. Gu, and D. R. Emerson, “Isothermal slip flow over curved surfaces,” Vacuum 76(1), 73 (2004).
62. L. Zhu, P. Attard, and C. Neto, “Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements,” Langmuir 27(11), 6712 (2011).
63. D. Blanchard and P. Ligrani, “Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows,” Phys. Fluids 19(6), 063602 (2007).
64. O. V. Sazhin, S. F. Borisov, and F. Sharipov, “Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces,” J. Vac. Sci. Technol. A 19(5), 2499 (2001).
65. W. J. Maegley and A. S. Berman, “Transition from free-molecule to continuum flow in an annulus,” Phys. Fluids 15(5), 780 (1972).
66. D. A. Lockerby, J. M. Reese, and M. A. Gallis, “The usefulness of higher-order constitutive relations for describing the Knudsen layer,” Phys. Fluids 17(10), 100609 (2005).
67. B.-Y. Cao, M. Chen, and Z.-Y. Guo, “Temperature dependence of the tangential momentum accommodation coefficient for gases,” Appl. Phys. Lett. 86(9), 091905 (2005).
68. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, New York, 1970).
69. F. Sharipov and V. Seleznev, “Data on internal rarefied gas flows,” J. Phys. Chem. Ref. Data 27(3), 657 (1998).

Data & Media loading...


Article metrics loading...



A customized atomic force microscope has been utilized in dynamic mode to measure hydrodynamic forces between a sphere and a flat plate, both coated with gold. In order to study the influence of the mean free path on slippage without systematic errors due to varying surface properties, all data have been acquired at precisely the same spot on the plate. Local accommodation coefficients and slip lengths have been extracted from experimental data for He, Ne, Ar, Kr, as well as N, CO, and CH, at Knudsen numbers between 3 × 10 and 3. We found that slippage is effectively suppressed if the mean free path of the fluid is lower than the roughness amplitude on the surface, while we could not observe a clear correlation between the accommodation coefficient and the molecular mass.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd