We develop a coarse-grained theory to predict the concentration distribution of a suspension of vesicles or red blood cells in a wall-bound Couette flow. This model balances the wall-induced hydrodynamic lift on deformable particles with the flux due to binary collisions, which we represent via a second-order kinetic master equation. Our theory predicts a depletion of particles near the channel wall (i.e., the Fahraeus-Lindqvist effect), followed by a near-wall formation of particle layers. We quantify the effect of channel height, viscosity ratio, and shear-rate on the cell-free layer thickness (i.e., the Fahraeus-Lindqvist effect). The results agree with in vitro experiments as well as boundary integral simulations of suspension flows. Lastly, we examine a new type of collective particle motion for red blood cells induced by hydrodynamic interactions near the wall. These “swapping trajectories,” coined by Zurita-Gotor et al [J. Fluid Mech.592, 447

469
(2007)], could explain the origin of particle layering near the wall. The theory we describe represents a significant improvement in terms of time savings and predictive power over current large-scale numerical simulations of suspension flows.

1.
R.
Fahraeus
and
T.
Lindqvist
, “
The viscosity of the blood in narrow capillary tubes
,”
Am. J. Physiol.
96
,
562
568
(
1931
).
2.
A. R.
Pries
,
D.
Neuhaus
, and
P.
Gaehtgens
, “
Blood viscosity in tube flow: dependence on diameter and hematocrit
,”
Am. J. Physiol.
263
,
1770
1778
(
1992
).
3.
S.
Kim
,
R. L.
Kong
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
, “
Temporal and spatial variations of cell-free layer width in arterioles
,”
Am. J. Physiol. Heart Circ. Physiol.
293
,
H1526
H1535
(
2007
).
4.
H.
Zhao
,
E. S. G.
Shaqfeh
, and
V.
Narsimhan
, “
Shear-induced particle migration and margination in a cellular suspension
,”
Phys. Fluids
24
,
011902
(
2012
).
5.
A. R.
Pries
,
K.
Ley
,
M.
Claassen
, and
P.
Gaehtgens
, “
Red cell distribution at microvascular bifurcations
,”
Microvas. Res.
38
,
81
101
(
1989
).
6.
A.
Kumar
and
M. D.
Graham
, “
Margination and segregation in confined flows of blood and other multicomponent suspensions
,”
Soft Matter
8
,
10536
10548
(
2012
).
7.
J. C.
Liao
,
T. W.
Hein
,
M. W.
Vaughn
,
K.-T.
Huang
, and
L.
Kuo
, “
Intravascular flow decreases erythrocyte consumption of nitric oxide
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
8757
8761
(
1999
).
8.
N.
Tateishi
,
Y.
Suzuki
,
I.
Cicha
, and
N.
Maeda
, “
O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation
,”
Am. J. Physiol. Heart Circ. Physiol.
281
,
H448
H456
(
2001
).
9.
S. D.
Hudson
, “
Wall migration and shear-induced diffusion of fluid droplets in emulsions
,”
Phys. Fluids
15
,
1106
(
2003
).
10.
M. R.
King
and
D. T.
Leighton
, “
Measurement of shear-induced dispersion in a dilute emulsion
,”
Phys. Fluids
13
,
397
(
2001
).
11.
P.
Pranay
,
R. G.
Henriquez-Rivera
, and
M. D.
Graham
, “
Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids
,”
Phys. Fluids
24
,
061902
(
2012
).
12.
T.
Podgorski
,
N.
Callens
,
C.
Minetti
,
G.
Coupier
, and
C.
Misbah
, “
Dynamics of vesicle suspensions in shear flow between walls
,”
Microgravity Sci. Technol.
23
,
263
270
(
2011
).
13.
S.
Kim
,
P. K.
Ong
,
O.
Yalcin
,
M.
Intaglietta
, and
P. C.
Johnson
, “
The cell-free layer in microvascular blood flow
,”
Biorheology
46
,
181
189
(
2009
).
14.
H.
Zhao
,
A. P.
Spann
, and
E. S. G.
Shaqfeh
, “
The dynamics of a vesicle in a wall-bound shear flow
,”
Phys. Fluids
23
,
121901
(
2011
).
15.
J. R.
Smart
and
D. T.
Leighton
, “
Measurement of the drift of a droplet due to the presence of a plane
,”
Phys. Fluids A
3
,
21
(
1991
).
16.
D.
Leighton
and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
17.
M.
Loewenberg
and
E. J.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid Mech.
338
,
299
315
(
1997
).
18.
M. K.
Lyon
and
L. G.
Leal
, “
An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part I. Monodisperse systems
,”
J. Fluid Mech.
363
,
25
(
1998
).
19.
M.
Zurita-Gotor
,
J.
Blawzdziewicz
, and
E.
Wajnryb
, “
Layering instability in a confined suspension flow
,”
Phys. Rev. Lett.
108
,
068301
(
2012
).
20.
A.
Kumar
and
M. D.
Graham
, “
Mechanism of margnination in confined flows of blood and other muliticomponent suspensions
,”
Phys. Rev. Lett.
109
,
108102
(
2012
).
21.
M.
Abkarian
and
A.
Viallat
, “
Vesicles and red blood cells in shear flow
,”
Soft Matter
4
,
656
657
(
2008
).
22.
M.
Zurita-Gotor
,
J.
Blawzdziewicz
, and
E.
Wajnryb
, “
Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres
,”
J. Fluid Mech.
592
,
447
469
(
2007
).
23.
E. C.
Eckstein
,
D. G.
Bailey
, and
A. H.
Shapiro
, “
Self-diffusion of particles in shear flow of a suspension
,”
J. Fluid Mech.
79
,
191
(
1977
).
24.
P. C. H.
Chan
and
L. G.
Leal
, “
An experimental study of drop migration in shear flow between concentric cylinders
,”
Int. J. Multiphase Flow
7
,
83
(
1981
).
25.
W. S. J.
Uijttewaal
,
E. J.
Nijhof
, and
R. M.
Heethaar
, “
Droplet migration, deformation, and orientation in the presence of a plane wall: A numerical study compared to analytical theories
,”
Phys. Fluids A
5
,
819
(
1993
).
26.
N.
Callens
,
C.
Minetti
,
G.
Coupier
,
M.
Mader
,
F.
Dubois
,
C.
Misbah
, and
P.
Podgorski
, “
Hydrodynmamic lift of vesicles under shear flow in microgravity
,”
Europhys. Lett.
83
,
24002
(
2008
).
27.
P. C. H.
Chan
and
L. G.
Leal
, “
The motion of a deformable drop in a second-order fluid
,”
J. Fluid Mech.
92
,
131
(
1979
).
28.
G.
Coupier
,
B.
Kaoui
,
T.
Podgorski
, and
C.
Misbah
, “
Noninertial lateral migration of vesicles in bounded Poiseuille flow
,”
Phys. Fluids
20
,
111702
(
2008
).
29.
G.
Danker
,
P. M.
Vlahovska
, and
C.
Misbah
, “
Vesicles in poiseuille flow
,”
Phys. Rev. Lett.
102
,
148102
(
2009
).
30.
J.
Dupire
,
M.
Socol
, and
A.
Viallat
, “
Full dynamics of a red blood cell in shear flow
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
20808
20813
(
2012
).
31.
M.
Marchioro
and
A.
Acrivos
, “
Shear-induced particle diffusivities from numerical simulations
,”
J. Fluid Mech.
443
,
101
128
(
2001
).
32.
X.
Li
and
C.
Pozrikidis
, “
Wall-bounded shear flow and channel flow of suspensions of liquid drops
,”
Int. J. Multiphase Flow
26
,
1247
1279
(
2000
).
33.
F. R.
Da Cunha
and
E. J.
Hinch
, “
Shear-induced dispersion in a dilute suspension of rough spheres
,”
J. Fluid Mech.
309
,
211
223
(
1996
).
34.
S.
Guido
and
M.
Simeone
, “
Binary collision of drops in simple shear flow by computer-assisted video optical microscopy
,”
J. Fluid Mech.
357
,
1
20
(
1998
).
35.
V.
Kantsler
,
E.
Segre
, and
V.
Steinberg
, “
Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow
,”
Europhys. Lett.
82
,
58005
(
2008
).
36.
E.
Lac
and
D.
Barths-Biesel
, “
Pair-wise interaction of capsules in simple shear flow: three-dimensional effects
,”
Phys. Fluids
20
,
040801
(
2008
).
37.
H.
Zhao
and
E. S. G.
Shaqfeh
, “
The dynamics of a non-dilute vesicle suspension in a simple shear flow
,”
J. Fluid Mech.
725
,
709
731
(
2013
).
38.
H.
Zhao
,
A. H. G.
Isfahani
,
L.
Olson
, and
J. B.
Freund
, “
A spectral boundary integral method for micro-circulatory cellular flows
,”
J. Comput. Phys.
229
,
3726
3744
(
2010
).
39.
R.
Skalak
and
N.
Ozkaya
, “
Biofluid mechanics
,”
Annu. Rev. Fluid Mech.
21
,
167
(
1989
).
40.
W.
Helfrich
, “
Elastic properties of lipid bilayers: theory and possible experiments
,”
Z. Naturforsch. C
28
,
693
703
(
1973
).
41.
R. E.
Waugh
and
R. M.
Hochmuth
, “
Mechanics and deformability of hematocytes
,” in
The Biomedical Engineering Handbook
, 2nd ed. (
CRC Press LLC
,
Boca Raton, FL
,
2000
).
42.
D. V.
Zhelev
,
D.
Needham
, and
R. M.
Hochmuth
, “
A novel micropipet method for measuring the bending modulus of vesicle membrances
,”
Biophys. J.
67
,
720
727
(
1994
).
43.
H.
Strey
,
M.
Peterson
, and
E.
Sackmann
, “
Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition
,”
Biophys. J.
69
,
478
488
(
1995
).
44.
J. P.
Mills
,
L.
Qie
,
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
, “
Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers
,”
Mech. Chem. Biosyst.
1
(
3
),
169
180
(
2004
).
45.
A. S.
Popel
and
P. C.
Johnson
, “
Microcirculation and Hemorheology
,”
Annu. Rev. Fluid Mech.
37
,
43
69
(
2005
).
46.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
47.
J. R.
Blake
, “
A note on the image system for a stokeslet in a no-slip boundary
,”
Proc. Cambridge Philos. Soc.
70
,
303
(
1971
).
48.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
,
317
328
(
1959
).
49.
C. T.
Loop
, “
Smooth subdivision surfaces based on triangles
,” Master's thesis,
University of Utah
,
1998
.
50.
J.
Stam
, “
Evaluation of loop subdivision surfaces
,”
SIGGRAPH Course Notes
, August
1999
.
51.
I. V.
Pivkin
and
P. E.
Karniadakis
, “
Accurate coarse-grained modeling of red blood cells
,”
Phys. Rev. Lett.
101
,
118105
(
2008
).
52.
P. R.
Nott
and
J. F.
Brady
, “
Pressure-driven flow of suspensions: simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
53.
C. W.
Hsu
and
Y. L.
Chen
, “
Migration and fractionation of deformable particles in microchannel
,”
J Chem. Phys.
133
,
034906
(
2010
).
54.
M. H. Y.
Tan
,
D. V.
Le
, and
K. H.
Chiam
, “
Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow
,”
Soft Matter
8
,
2243
(
2012
).
55.
H.
Noguchi
and
G.
Gompper
, “
Shape transitions of fluid vesicles and red blood cells in capillary flows
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
14159
14164
(
2005
).
56.
R.
Tran-Son-Tay
,
S. P.
Sutera
, and
P. R.
Rao
, “
Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion
,”
Biophys. J.
46
,
65
72
(
1984
).
57.
G.
Bugliarello
and
J. W.
Hayden
, “
Detailed characteristics of the flow of blood in vitro
,”
Trans. Soc. Rheol.
7
,
209
230
(
1963
).
58.
A. R.
Pries
,
T. W.
Secomb
,
P.
Gaehtgens
, and
J. F.
Gross
, “
Blood flow in microvascular networks: Experiments and simulation
,”
Circ. Res.
67
,
826
834
(
1990
).
59.
A. R.
Pries
and
T. W.
Secomb
, “
Blood flow in microvascular networks
,”
Handbook of Physiology: Microcirculation
, 2nd ed., edited by
R. F.
Tuma
,
W. N.
Duran
, and
K.
Ley
(
Academic Press
,
San Diego
,
2008
), pp.
3
36
.
60.
N.
Tateishi
,
Y.
Suzuki
,
M.
Soutani
, and
N.
Maeda
, “
Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance
,”
J. Biomech.
27
(
9
),
1119
(
1994
).
61.
Y.
Suzuki
,
N.
Tateishi
,
M.
Soutani
, and
N.
Maeda
, “
Flow behavior of erythrocytes in microvessels and glass capillaries: Effects of erythrocyte deformation and erythrocyte aggregation
,”
Int. J. Microcirc.
16
,
187
194
(
1996
).
62.
P. K.
Ong
,
B.
Namgung
,
P. C.
Johnson
, and
S.
Kim
, “
Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles
,”
Am. J. Physiol. Heart Circ. Physiol.
298
(
6
),
H1870
(
2010
).
63.
See supplementary material at http://dx.doi.org/10.1063/1.4810808 for (1) “Vesicle_lift_and_collision.xls” which lists the raw data we obtained for the lift velocity and binary collision displacements from our DNS simulations. The lift velocities are for ν = 0.95 vesicles at CaB = 8, and the collision data are for ν = 0.95 vesicles at CaB = 1. We find that the collisional displacements differ by less than 1% between CaB = 8 and CaB = 1 (data not shown), indicating that the collisional processes are relatively insensitive to capillary number for CaB > 1; (2) “RBC_lift_and_collision.xls” contains the raw data we obtained for the lift and collisional processes of red blood cells. We examine shear capillary numbers in between 0.25 < Cas < 2, and viscosity ratios in between 0.25 < λ < 3; (3) “coll_wall_h15_dz_1.avi”—This movie illustrates a binary collision between two red blood cells near a wall, where the two particles are initially separated by Δz = 1 in the wall-normal direction, with the lower particle at a height h = 1.5 above the wall. This movie illustrates a standard binary collision, where the wall does not induce the “swapping” effect mentioned in our paper; and (4) “coll_wall_h15_dz_025_v2.avi” movie illustrates the “swapping” effect of two red blood cells near a wall. The two particles are initially separated by Δz = 0.25 in the wall-normal direction, with the lower particle at a height h = 1.5 above the wall. After a long period of time, the lower particle eventually overtakes and moves above the upper particle.
64.
P. M.
Kulkarni
and
J. F.
Morris
, “
Pair-sphere trajectories in finite-Reynolds-number shear flow
,”
J. Fluid Mech.
596
,
413
435
(
2008
).
65.
G.
Bossis
,
A.
Meunier
, and
J. D.
Sherwood
, “
Stokesian dynamics simulations of particle trajectories near a plane
,”
Phys. Fluids A
3
,
1853
1858
(
1991
).

Supplementary Material

You do not currently have access to this content.