1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/7/10.1063/1.4811398
1.
1. J. Lahjomri, P. Caperan, and A. Alemany, “The cylinder wake in a magnetic field aligned with the velocity,” J. Fluid Mech. 253, 421448 (1993).
http://dx.doi.org/10.1017/S0022112093001855
2.
2. G. Mutschke, G. Gerbeth, V. Shatrov, and A. Tomboulides, “The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: A linear stability analysis,” Phys. Fluids 13, 723734 (2001).
http://dx.doi.org/10.1063/1.1344895
3.
3. V. Dousset and A. Pothérat, “Numerical simulations of a cylinder wake under a strong axial magnetic field,” Phys. Fluids 20, 017104 (2008).
http://dx.doi.org/10.1063/1.2831153
4.
4. W. K. Hussam, M. C. Thompson, and G. J. Sheard, “Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number,” Int. J. Heat Mass Transfer 54, 10911100 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.013
5.
5. U. Müller and L. Bühler, Magnetofluiddynamics in Channels and Containers (Springer, 2001).
6.
6. P. A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2001).
7.
7. J. C. R. Hunt, “Magnetohydrodynamic flow in rectangular ducts,” J. Fluid Mech. 21, 577590 (1965).
http://dx.doi.org/10.1017/S0022112065000344
8.
8. B. Knaepen and R. Moreau, “Magnetohydrodynamic turbulence at low magnetic Reynolds number,” Annu. Rev. Fluid. Mech. 40, 2545 (2008).
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110231
9.
9. J. Sommeria and R. Moreau, “Why, how, and when, MHD turbulence becomes two-dimensional,” J. Fluid Mech. 118, 507518 (1982).
http://dx.doi.org/10.1017/S0022112082001177
10.
10. L. Buhler, “Instabilities in quasi-two-dimensional magnetohydrodynamic flows,” J. Fluid Mech. 326, 125150 (1996).
http://dx.doi.org/10.1017/S0022112096008269
11.
11. M. Frank, L. Barleon, and U. Muller, “Visual analysis of two-dimensional magnetohydrodynamics,” Phys. Fluids 13, 22872295 (2001).
http://dx.doi.org/10.1063/1.1383785
12.
12. W. K. Hussam, M. C. Thompson, and G. J. Sheard, “Optimal transient disturbances behind a circular cylinder in a quasi-two-dimensional magnetohydrodynamic duct flow,” Phys. Fluids 24, 024105 (2012).
http://dx.doi.org/10.1063/1.3686809
13.
13. B. Mück, C. Günther, U. Müller, and L. Bühler, “Three-dimensional MHD flows in rectangular ducts with internal obstacles,” J. Fluid Mech. 418, 265295 (2000).
http://dx.doi.org/10.1017/S0022112000001300
14.
14. U. Schumann, “Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field,” J. Fluid Mech. 74, 3158 (1976).
http://dx.doi.org/10.1017/S0022112076001675
15.
15. F. Ham, K. Mattson, and G. Iaccarino, “Accurate and stable finite volume operators for unstructured flow solvers,” Annual Research Briefs, Center for Turbulence Research, Stanford University/NASA Ames, 2006.
16.
16. P. Moin and S. V. Apte, “Large-eddy Simulation of realistic gas turbine combustors,” AIAA J. 44, 698708 (2006).
http://dx.doi.org/10.2514/1.14606
17.
17. M.-J. Ni, R. Munipalli, P. Huang, N. Morley, and M. Abdou, “A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh,” J. Comput. Phys. 227, 205228 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.07.023
18.
18. X. Albets-Chico, H. Radhakrishnan, S. Kassinos, and B. Knaepen, “Numerical simulation of a liquid-metal flow in a poorly conducting pipe subjected to a strong fringing magnetic field,” Phys. Fluids 23, 047101 (2011).
http://dx.doi.org/10.1063/1.3570686
19.
19. A. Viré, D. Krasnov, T. Boeck, and B. Knaepen, “Modeling and discretization errors in large eddy simulations of hydrodynamic and magnetohydrodynamic channel flows,” J. Comput. Phys. 230, 19031922 (2011).
http://dx.doi.org/10.1016/j.jcp.2010.11.039
20.
20. S. Vantieghem, X. Albets-Chico, and B. Knaepen, “The velocity profile of laminar MHD flows in circular conducting pipes,” Theor. Comput. Fluid Dyn. 23, 525533 (2009).
http://dx.doi.org/10.1007/s00162-009-0163-0
21.
21. N. Kanaris, D. Grigoriadis, and S. Kassinos, “Three dimensional flow around a confined circular cylinder,” Phys. Fluids 23, 064106 (2011).
http://dx.doi.org/10.1063/1.3599703
22.
22. A. Pothérat and V. Dymkou, “Direct numerical simulations of low-Rm MHD turbulence based on the least dissipative modes,” J. Fluid Mech. 655, 174197 (2010).
http://dx.doi.org/10.1017/S0022112010000807
23.
23. M. Nishioka and H. Sato, “Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds numbers,” J. Fluid Mech. 65, 97112 (1974).
http://dx.doi.org/10.1017/S0022112074001273
24.
24. C. P. Jackson, “A finite-element study of the onset of vortex shedding in flow past variously shaped bodies,” J. Fluid Mech. 182, 2345 (1987).
http://dx.doi.org/10.1017/S0022112087002234
25.
25. M. Provansal, C. Mathis, and L. Boyer, “Benard-von Karman instability: Transient and forced regimes,” J. Fluid Mech. 182, 122 (1987).
http://dx.doi.org/10.1017/S0022112087002222
26.
26. J. H. Gerrard, “The wakes of cylindrical bluff bodies at low Reynolds number,” Philos. Trans. R. Soc. London, Ser. A 288, 351382 (1978).
http://dx.doi.org/10.1098/rsta.1978.0020
27.
27. B. Pier, “On the frequency selection of finite-amplitude vortex shedding in the cylinder wake,” J. Fluid Mech. 458, 407417 (2002).
http://dx.doi.org/10.1017/S0022112002008054
28.
28. F. Giannetti and P. Luchini, “Structural sensitivity of the first instability of the cylinder wake,” J. Fluid Mech. 581, 167197 (2007).
http://dx.doi.org/10.1017/S0022112007005654
29.
29. J. H. Chen, W. G. Pritchard, and S. J. Tavener, “Bifurcation of flow past a cylinder between parallel planes,” J. Fluid Mech. 284, 2341 (1995).
http://dx.doi.org/10.1017/S0022112095000255
30.
30. M. Sahin and R. G. Owens, “A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder,” Phys. Fluids 16, 13051320 (2004).
http://dx.doi.org/10.1063/1.1668285
31.
31. F. H. Shair, A. S. Grove, E. Petersen, and A. Acrivos, “The effect of confining walls on the stability of the steady wake behind a circular cylinder,” J. Fluid Mech. 17, 546550 (1963).
http://dx.doi.org/10.1017/S0022112063001506
32.
32. A. Sohankar, C. Norberg, and L. Davidson, “Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers,” Phys. Fluids 11, 288306 (1999).
http://dx.doi.org/10.1063/1.869879
33.
33. L. Zovatto and G. Pedrizzetti, “Flow about a circular cylinder between parallel walls,” J. Fluid Mech. 440, 125 (2001).
http://dx.doi.org/10.1017/S0022112001004608
34.
34. V. Dousset and A. Pothérat, “Characterization of the flow past a truncated square cylinder in a duct under a spanwise magnetic field,” J. Fluid Mech. 691, 341367 (2012).
http://dx.doi.org/10.1017/jfm.2011.478
35.
35. H. F. Wang, Y. Zhou, C. K. Chan, and K. S. Lam, “Effect of initial conditions on interaction between a boundary layer and a wall-mounted nite-length-cylinder wake,” Phys. Fluids 18, 065106 (2006).
http://dx.doi.org/10.1063/1.2212329
36.
36. S. Camarri and F. Giannetti, “Effect of confinement on three-dimensional stability in the wake of a circular cylinder,” J. Fluid Mech. 642, 477487 (2010).
http://dx.doi.org/10.1017/S0022112009992345
37.
37. D. D. Papailiou, “Magneto-fluid-mechanic turbulent vortex streets,” in Fourth Beer-Sheva Seminar on MHD Flows and Turbulence (AIAA, 1984), pp. 152173.
38.
38. J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 6994 (1995).
http://dx.doi.org/10.1017/S0022112095000462
39.
39. C. H. Chyu and D. Rockwell, “Near-wake structure of an oscillating cylinder: Effect of controlled shear-layer vortices,” J. Fluid Mech. 322, 2149 (1996).
http://dx.doi.org/10.1017/S0022112096002698
40.
40. A. Prasad and C. H. K. Williamson, “The instability of the shear layer separating from a bluff body,” J. Fluid Mech. 333, 375402 (1997).
http://dx.doi.org/10.1017/S0022112096004326
41.
41. A. G. Kravchenko and P. Moin, “Numerical studies of flow over a circular cylinder at ReD = 3900,” Phys. Fluids 12, 403417 (2000).
http://dx.doi.org/10.1063/1.870318
42.
42. P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15, 7073 (1967).
http://dx.doi.org/10.1109/TAU.1967.1161901
43.
43. L. S. G. Kovasznay, “Hot-wire investigation of the wake behind cylinders at low Reynolds numbers,” Proc. R. Soc. London, Ser. A 198, 174190 (1949).
http://dx.doi.org/10.1098/rspa.1949.0093
44.
44. A. Alemany, R. Moreau, P. L. Sulem, and U. Frisch, “Influence of an external magnetic field on homogeneous MHD turbulence,” J. Mec. 18(2), 277313 (1979).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/7/10.1063/1.4811398
Loading
/content/aip/journal/pof2/25/7/10.1063/1.4811398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/7/10.1063/1.4811398
2013-07-09
2014-09-19

Abstract

This paper presents three-dimensional direct numerical simulations of liquid metal flow around a circular cylinder placed symmetrically in a rectangular duct, under a wide range of magnetic field intensities. Results are presented for values of the Hartmann number (based on the duct width) in the range of 0 ⩽ ⩽ 1120, and the Reynolds number (based on the cylinder diameter and centerline velocity) in the range 0 ⩽ ⩽ 5000. The generated flow regimes and the associated critical values of parameters are investigated in detail through full three-dimensional simulations. The effect of the magnetic field on the wake structure is discussed in relation to the possible mechanisms for the generation or suppression of vortices, and to previous attempts to model magnetohydrodynamic flows using simplified two-dimensional models. Present results reveal a non-monotonic dependance of the critical Reynolds number for the onset of vortex shedding, with respect to the Hartmann number. For certain combinations of and values, this work confirms the onset of a new flow regime, the existence of which has been recently suggested based on quasi-two-dimensional simulations. Unexpectedly, the spanwise distribution of the force coefficients along the cylinder is found to become more three-dimensional with increasing . Furthermore, the three-dimensional nature of the present simulations reveals additional counter-intuitive features of the new regime that could not possibly had been captured by quasi-two-dimensional models. One such feature, shown here for the first time, is an increase in the flow unsteadiness with increasing intensity of the magnetic field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/7/1.4811398.html;jsessionid=cjs58q860gedt.x-aip-live-02?itemId=/content/aip/journal/pof2/25/7/10.1063/1.4811398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/7/10.1063/1.4811398
10.1063/1.4811398
SEARCH_EXPAND_ITEM