Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/25/7/10.1063/1.4812639
1.
1.The scientific committee appointed by the IUTAM was: John F. Brady (California Institute of Technology, USA), Joe D. Goddard (University of California at San Diego, USA), Elisabeth Guazzelli (Aix-Marseille Universite, France), Hisao Hayakawa (Kyoto University, Japan), Devang Khakhar (Indian Institute of Technology Bombay, India), L. Gary Leal (University of California at Santa Barbara, USA), Prabhu R. Nott (Chair, Indian Institute of Science, India), and Sankaran Sundaresan (Princeton University, USA).
2.
2.See supplementary material at http://dx.doi.org/10.1063/1.4812639 for the complete programme and book of abstracts from the symposium. [Supplementary Material]
3.
3. E. Guazzelli and L. Oger, Mobile Particulate Systems, NATO ASI Series E: Applied Sciences (Kluwer Academic Publishers, Dordrecht, 1995).
4.
4.These include the IUTAM Symposium on Hydrodynamic Diffusion of Suspended Particles held in 1995 at Estes Park, USA,69 the IUTAM Symposium on Interactions for Dispersed Systems in Newtonian and Viscoelastic Fluids held in 2006 at Guanajuato, Mexico,70 the IUTAM Symposium on Recent Advances in Multiphase Flow held in 2008 at Istanbul, Turkey,71 and the IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows held in 2009 at Reggio Calabria, Italy.72
5.
5. R. E. Caflisch and J. H. Luke, “Variance in the sedimentation speed of a suspension,” Phys. Fluids 28, 759 (1985).
http://dx.doi.org/10.1063/1.865095
6.
6. H. Nicolai and E. Guazzelli, “Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres,” Phys. Fluids 7, 3 (1995).
http://dx.doi.org/10.1063/1.868727
7.
7. J. H. Luke, “Decay of velocity fluctuations in a stably stratified suspension,” Phys. Fluids 12, 1619 (2000).
http://dx.doi.org/10.1063/1.870412
8.
8. D. C. Gómez, L. Bergougnoux, J. Hinch, and E. Guazzelli, “On stratification control of the velocity fluctuations in sedimentation,” Phys. Fluids 19, 098102 (2007).
http://dx.doi.org/10.1063/1.2772902
9.
9. J. Nitsche and G. Batchelor, “Break-up of a falling drop containing dispersed particles,” J. Fluid Mech. 340, 161175 (1997).
http://dx.doi.org/10.1017/S0022112097005223
10.
10. Y. Oyama, Bull. Inst. Phys. Chem. Res. Jpn. Report 5 18, 600 (1939).
11.
11. S. Das Gupta, D. Khakhar, and S. Bhatia, “Axial segregation of particles in a horizontal rotating cylinder,” Chem. Eng. Sci. 46, 15131517 (1991).
http://dx.doi.org/10.1016/0009-2509(91)85076-A
12.
12. M. Tirumkudulu, A. Tripathi, and A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507 (1999).
http://dx.doi.org/10.1063/1.869923
13.
13. G. Batchelor and J. Green, “The determination of the bulk stress in a suspension of spherical particles to order c2,” J. Fluid Mech. 56, 401427 (1972).
http://dx.doi.org/10.1017/S0022112072002435
14.
14. H. J. Wilson and R. H. Davis, “The viscosity of a dilute suspension of rough spheres,” J. Fluid Mech. 421, 339367 (2000).
http://dx.doi.org/10.1017/S0022112000001695
15.
15. F. Boyer, É. Guazzelli, and O. Pouliquen, “Unifying suspension and granular rheology,” Phys. Rev. Lett. 107, 188301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.188301
16.
16. É. Couturier, F. Boyer, O. Pouliquen, and É. Guazzelli, “Suspensions in a tilted trough: second normal stress difference,” J. Fluid Mech. 686, 26 (2011).
http://dx.doi.org/10.1017/jfm.2011.315
17.
17. S. Savage, “The mechanics of rapid granular flows,” Adv. Appl. Mech. 24, 289366 (1984).
http://dx.doi.org/10.1016/S0065-2156(08)70047-4
18.
18. G. D. R. Midi, “On dense granular flows,” Eur. Phys. J. E 14, 341365 (2004).
http://dx.doi.org/10.1140/epje/i2003-10153-0
19.
19. P. Jop, Y. Forterre, and O. Pouliquen, “A constitutive law for dense granular flows,” Nature (London) 441, 727730 (2006).
http://dx.doi.org/10.1038/nature04801
20.
20. O. Reynolds, “On the dilatancy of media composed of rigid particles in contact. With experimental illustrations,” Philos. Mag. 20, 469481 (1885).
http://dx.doi.org/10.1080/14786448508627791
21.
21. A. N. Schofield and C. P. Wroth, Critical State Soil Mechanics (McGraw-Hill, London, 1968).
22.
22. R. Jackson, “Some mathematical and physical aspects of continuum models for the motion of the granular materials,” in Theory of Dispersed Multiphase Flow, edited by R. E. Meyer (Academic Press, New York, 1983), pp. 291337.
23.
23. K. K. Rao and P. R. Nott, An Introduction to Granular Flow (Cambridge University Press, New York, 2008).
24.
24. D. G. B. Edelen, “On the existence of symmetry relations and dissipation potentials,” Arch. Ration. Mech. Anal. 51, 218227 (1973).
http://dx.doi.org/10.1007/BF00276075
25.
25. P. Dantu, “Contribution à l'étude mécanique et géometrique des milieux pulveérulents,” in Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering (Butterworths, London, 1957), pp. 144148.
26.
26. V. Mehandia, K. J. Gutam, and P. R. Nott, “Anomalous stress profile in a sheared granular column,” Phys. Rev. Lett. 109, 128002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.128002
27.
27. H. B. Mühlhaus and I. Vardoulakis, “The thickness of shear bands in granular materials,” Geotechnique 37, 271283 (1987).
http://dx.doi.org/10.1680/geot.1987.37.3.271
28.
28. I. Vardoulakis and E. Aifantis, “A gradient flow theory of plasticity for granular materials,” Acta Mech. 87, 197217 (1991).
http://dx.doi.org/10.1007/BF01299795
29.
29. L. S. Mohan, K. K. Rao, and P. R. Nott, “A frictional Cosserat model for the slow shearing of granular materials,” J. Fluid Mech. 457, 377409 (2002).
http://dx.doi.org/10.1017/S0022112002007796
30.
30. T. Liu and L. Shen, “Fluid flow and optical flow,” J. Fluid Mech. 614, 253291 (2008).
http://dx.doi.org/10.1017/S0022112008003273
31.
31. I. Sharma, J. T. Jenkins, and J. A. Burns, “Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids,” Icarus 200, 304322 (2009).
http://dx.doi.org/10.1016/j.icarus.2008.11.003
32.
32. W. M. Visscher and M. Bolsterli, “Random packing of equal and unequal spheres in two and three dimensions,” Nature (London) 239, 504507 (1972).
http://dx.doi.org/10.1038/239504a0
33.
33. T. Schwager, D. E. Wolf, and T. Pöschel, “Fractal substructure of a nanopowder,” Phys. Rev. Lett. 100, 218002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.218002
34.
34. S. Chialvo, J. Sun, and S. Sundaresan, “Bridging the rheology of granular flows in three regimes,” Phys. Rev. E 85, 021305 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021305
35.
35. T. Weinhart, A. R. Thornton, S. Luding, and O. Bokhove, “From discrete particles to continuum fields near a boundary,” Granular Matter 14, 289294 (2012).
http://dx.doi.org/10.1007/s10035-012-0317-4
36.
36. J. Jenkins and M. Richman, “Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,” Phys. Fluids 28, 3485 (1985).
http://dx.doi.org/10.1063/1.865302
37.
37. K. Saitoh and H. Hayakawa, “Weakly nonlinear analysis of two dimensional sheared granular flow,” Granular Matter 13, 697711 (2011).
http://dx.doi.org/10.1007/s10035-011-0283-2
38.
38. F. Pacheco-Vázquez, G. Caballero-Robledo, J. Solano-Altamirano, E. Altshuler, A. Batista-Leyva, and J. Ruiz-Suárez, “Infinite penetration of a projectile into a granular medium,” Phys. Rev. Lett. 106, 218001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.218001
39.
39. C. Donahue, C. Hrenya, and R. Davis, “Stokes’ cradle: Newton's cradle with liquid coating,” Phys. Rev. Lett. 105, 034501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.034501
40.
40. C. Johnson, B. Kokelaar, R. Iverson, M. Logan, R. LaHusen, and J. Gray, “Grain-size segregation and levee formation in geophysical mass flows,” J. Geophysical Res. 117, F01032, doi:10.1029/2011JF002185 (2012).
http://dx.doi.org/10.1029/2011JF002185
41.
41. D. Khakhar, A. V. Orpe, and J. Ottino, “Surface granular flows: two related examples,” Adv. Complex Syst. 4, 407417 (2001).
http://dx.doi.org/10.1142/S0219525901000322
42.
42. P. Jop, Y. Forterre, O. Pouliquen et al., “Crucial role of sidewalls in granular surface flows: Consequences for the rheology,” J. Fluid Mech. 541, 167 (2005).
http://dx.doi.org/10.1017/S0022112005005987
43.
43. Y. Fan and K. Hill, “Phase transitions in shear-induced segregation of granular materials,” Phys. Rev. Lett. 106, 218301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.218301
44.
44. J. Gray and A. Thornton, “A theory for particle size segregation in shallow granular free-surface flows,” Proc. R. Soc. London 461, 14471473 (2005).
http://dx.doi.org/10.1098/rspa.2004.1420
45.
45. T. Börzsönyi, B. Szabó, G. Törös, S. Wegner, J. Török, E. Somfai, T. Bien, and R. Stannarius, “Orientational order and alignment of elongated particles induced by shear,” Phys. Rev. Lett. 108, 228302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.228302
46.
46. M. Sommerfeld, “Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence,” Int. J. Multiphase Flow 27, 18291858 (2001).
http://dx.doi.org/10.1016/S0301-9322(01)00035-0
47.
47. O. Simonin, E. Deutsch, and J. P. Minier, Eulerian Prediction of the Fluid/Particle Correlated Motion in Turbulent Two-phase Flows (Springer, 1993).
48.
48. E. Meneguz and M. W. Reeks, “Statistical properties of particle segregation in homogeneous isotropic turbulence,” J. Fluid Mech. 686, 338 (2011).
http://dx.doi.org/10.1017/jfm.2011.333
49.
49. R. H. A. Ijzermans, E. Meneguz, and M. W. Reeks, “Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion,” J. Fluid Mech. 653, 99 (2010).
http://dx.doi.org/10.1017/S0022112010000170
50.
50. Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technol. 77, 7987 (1993).
http://dx.doi.org/10.1016/0032-5910(93)85010-7
51.
51. S. Roy, A. Kemoun, M. H. Al-Dahhan, and M. P. Dudukovic, “Experimental investigation of the hydrodynamics in a liquid–solid riser,” AIChE J. 51, 802835 (2005).
http://dx.doi.org/10.1002/aic.10447
52.
52. A. R. Simha and S. Ramaswamy, “Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles,” Phys. Rev. Lett. 89, 05810110581014 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.058101
53.
53. J.-F. Joanny and S. Ramaswamy, “A drop of active matter,” J. Fluid Mech. 705, 4657 (2012).
http://dx.doi.org/10.1017/jfm.2012.131
54.
54. P. T. Underhill and M. D. Graham, “Correlations and fluctuations of stress and velocity in suspensions of swimming microorganisms,” Phys. Fluids 23, 121902 (2011).
http://dx.doi.org/10.1063/1.3670420
55.
55. X.-L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,” Phys. Rev. Lett. 84, 30173020 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3017
56.
56. G. Subramanian and D. L. Koch, “Critical bacterial concentration for the onset of collective swimming,” J. Fluid Mech. 632, 359 (2009).
http://dx.doi.org/10.1017/S002211200900706X
57.
57. D. Saintillan and M. J. Shelley, “Instabilities, pattern formation, and mixing in active suspensions,” Phys. Fluids 20, 123304 (2008).
http://dx.doi.org/10.1063/1.3041776
58.
58. A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson, “Enhanced mixing and spatial instability in concentrated bacterial suspensions,” Phys. Rev. E 80, 031903 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031903
59.
59. H. Brenner, “Rheology of a dilute suspension of dipolar spherical particles in an external field,” J. Colloid Interface Sci. 32, 141158 (1970).
http://dx.doi.org/10.1016/0021-9797(70)90110-4
60.
60. L. Jibuti, S. Rafaï, and P. Peyla, “Suspensions with a tunable effective viscosity: A numerical study,” J. Fluid Mech. 693, 345366 (2012).
http://dx.doi.org/10.1017/jfm.2011.535
61.
61. M. Garcia, S. Berti, P. Peyla, and S. Rafaï, “Random walk of a swimmer in a low-Reynolds-number medium,” Phys. Rev. E 83, 035301 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.035301
62.
62. J. O. Kessler, “Hydrodynamic focusing of motile algal cells,” Nature (London) 313, 218220 (1985).
http://dx.doi.org/10.1038/313218a0
63.
63. D. Saintillan, “Extensional rheology of active suspensions,” Phys. Rev. E 81, 056307 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.056307
64.
64. P. Bhattacharjee, A. McDonnell, R. Prabhakar, L. Yeo, and J. Friend, “Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting,” New J. Phys. 13, 023005 (2011).
http://dx.doi.org/10.1088/1367-2630/13/2/023005
65.
65. S. J. Ebbens and J. R. Howse, “In pursuit of propulsion at the nanoscale,” Soft Matter 6, 726738 (2010).
http://dx.doi.org/10.1039/b918598d
66.
66. J. F. Brady, “Particle motion driven by solute gradients with application to autonomous motion: Continuum and colloidal perspectives,” J. Fluid Mech. 667, 216259 (2011).
http://dx.doi.org/10.1017/S0022112010004404
67.
67. S. Camalet and F. Julicher, “Generic aspects of axonemal beating,” New J. Phys. 2, 24 (2000).
http://dx.doi.org/10.1088/1367-2630/2/1/324
68.
68. C. B. Lindemann, “A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella,” J. Theor. Biol 168, 175189 (1994).
http://dx.doi.org/10.1006/jtbi.1994.1097
69.
69. R. Davis, “Hydrodynamic diffusion of suspended particles: A symposium,” J. Fluid Mech. 310, 325335 (1996).
http://dx.doi.org/10.1017/S0022112096001826
70.
70. M. Denn, E. Meiburg, J. Morris, E. Shaqfeh, and T. Squires, “Report of the symposium on interactions for dispersed systems in Newtonian and viscoelastic fluids,” Phys. Fluids 18, 121501 (2006).
http://dx.doi.org/10.1063/1.2396902
71.
71. A. Acrivos and C. Delale, “Report on the IUTAM Symposium on Recent Advances in Multiphase Flows: Numerical and Experimental (11–14 June 2007, Istanbul, Turkey),” Phys. Fluids 20, 040501 (2008).
http://dx.doi.org/10.1063/1.2909620
72.
72. IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, Reggio Calabria, Italy, 14–18 September 2009, AIP Conference Proceedings Vol. 1227, edited by J. Goddard, J. Jenkins, and P. Giovine (American Institute of Physics, 2010).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/7/10.1063/1.4812639
Loading
/content/aip/journal/pof2/25/7/10.1063/1.4812639
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/7/10.1063/1.4812639
2013-07-18
2016-09-28

Abstract

This report summarizes the presentations and discussions conducted during the symposium, which was held under the aegis of the International Union of Theoretical and Applied Mechanics during 23–27 January 2012 in Bangalore, India.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/7/1.4812639.html;jsessionid=vihEmHoezVkTuMi73nqjWHpb.x-aip-live-02?itemId=/content/aip/journal/pof2/25/7/10.1063/1.4812639&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/25/7/10.1063/1.4812639&pageURL=http://scitation.aip.org/content/aip/journal/pof2/25/7/10.1063/1.4812639'
Right1,Right2,Right3,