Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.The scientific committee appointed by the IUTAM was: John F. Brady (California Institute of Technology, USA), Joe D. Goddard (University of California at San Diego, USA), Elisabeth Guazzelli (Aix-Marseille Universite, France), Hisao Hayakawa (Kyoto University, Japan), Devang Khakhar (Indian Institute of Technology Bombay, India), L. Gary Leal (University of California at Santa Barbara, USA), Prabhu R. Nott (Chair, Indian Institute of Science, India), and Sankaran Sundaresan (Princeton University, USA).
2.See supplementary material at for the complete programme and book of abstracts from the symposium. [Supplementary Material]
3. E. Guazzelli and L. Oger, Mobile Particulate Systems, NATO ASI Series E: Applied Sciences (Kluwer Academic Publishers, Dordrecht, 1995).
4.These include the IUTAM Symposium on Hydrodynamic Diffusion of Suspended Particles held in 1995 at Estes Park, USA,69 the IUTAM Symposium on Interactions for Dispersed Systems in Newtonian and Viscoelastic Fluids held in 2006 at Guanajuato, Mexico,70 the IUTAM Symposium on Recent Advances in Multiphase Flow held in 2008 at Istanbul, Turkey,71 and the IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows held in 2009 at Reggio Calabria, Italy.72
5. R. E. Caflisch and J. H. Luke, “Variance in the sedimentation speed of a suspension,” Phys. Fluids 28, 759 (1985).
6. H. Nicolai and E. Guazzelli, “Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres,” Phys. Fluids 7, 3 (1995).
7. J. H. Luke, “Decay of velocity fluctuations in a stably stratified suspension,” Phys. Fluids 12, 1619 (2000).
8. D. C. Gómez, L. Bergougnoux, J. Hinch, and E. Guazzelli, “On stratification control of the velocity fluctuations in sedimentation,” Phys. Fluids 19, 098102 (2007).
9. J. Nitsche and G. Batchelor, “Break-up of a falling drop containing dispersed particles,” J. Fluid Mech. 340, 161175 (1997).
10. Y. Oyama, Bull. Inst. Phys. Chem. Res. Jpn. Report 5 18, 600 (1939).
11. S. Das Gupta, D. Khakhar, and S. Bhatia, “Axial segregation of particles in a horizontal rotating cylinder,” Chem. Eng. Sci. 46, 15131517 (1991).
12. M. Tirumkudulu, A. Tripathi, and A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507 (1999).
13. G. Batchelor and J. Green, “The determination of the bulk stress in a suspension of spherical particles to order c2,” J. Fluid Mech. 56, 401427 (1972).
14. H. J. Wilson and R. H. Davis, “The viscosity of a dilute suspension of rough spheres,” J. Fluid Mech. 421, 339367 (2000).
15. F. Boyer, É. Guazzelli, and O. Pouliquen, “Unifying suspension and granular rheology,” Phys. Rev. Lett. 107, 188301 (2011).
16. É. Couturier, F. Boyer, O. Pouliquen, and É. Guazzelli, “Suspensions in a tilted trough: second normal stress difference,” J. Fluid Mech. 686, 26 (2011).
17. S. Savage, “The mechanics of rapid granular flows,” Adv. Appl. Mech. 24, 289366 (1984).
18. G. D. R. Midi, “On dense granular flows,” Eur. Phys. J. E 14, 341365 (2004).
19. P. Jop, Y. Forterre, and O. Pouliquen, “A constitutive law for dense granular flows,” Nature (London) 441, 727730 (2006).
20. O. Reynolds, “On the dilatancy of media composed of rigid particles in contact. With experimental illustrations,” Philos. Mag. 20, 469481 (1885).
21. A. N. Schofield and C. P. Wroth, Critical State Soil Mechanics (McGraw-Hill, London, 1968).
22. R. Jackson, “Some mathematical and physical aspects of continuum models for the motion of the granular materials,” in Theory of Dispersed Multiphase Flow, edited by R. E. Meyer (Academic Press, New York, 1983), pp. 291337.
23. K. K. Rao and P. R. Nott, An Introduction to Granular Flow (Cambridge University Press, New York, 2008).
24. D. G. B. Edelen, “On the existence of symmetry relations and dissipation potentials,” Arch. Ration. Mech. Anal. 51, 218227 (1973).
25. P. Dantu, “Contribution à l'étude mécanique et géometrique des milieux pulveérulents,” in Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering (Butterworths, London, 1957), pp. 144148.
26. V. Mehandia, K. J. Gutam, and P. R. Nott, “Anomalous stress profile in a sheared granular column,” Phys. Rev. Lett. 109, 128002 (2012).
27. H. B. Mühlhaus and I. Vardoulakis, “The thickness of shear bands in granular materials,” Geotechnique 37, 271283 (1987).
28. I. Vardoulakis and E. Aifantis, “A gradient flow theory of plasticity for granular materials,” Acta Mech. 87, 197217 (1991).
29. L. S. Mohan, K. K. Rao, and P. R. Nott, “A frictional Cosserat model for the slow shearing of granular materials,” J. Fluid Mech. 457, 377409 (2002).
30. T. Liu and L. Shen, “Fluid flow and optical flow,” J. Fluid Mech. 614, 253291 (2008).
31. I. Sharma, J. T. Jenkins, and J. A. Burns, “Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids,” Icarus 200, 304322 (2009).
32. W. M. Visscher and M. Bolsterli, “Random packing of equal and unequal spheres in two and three dimensions,” Nature (London) 239, 504507 (1972).
33. T. Schwager, D. E. Wolf, and T. Pöschel, “Fractal substructure of a nanopowder,” Phys. Rev. Lett. 100, 218002 (2008).
34. S. Chialvo, J. Sun, and S. Sundaresan, “Bridging the rheology of granular flows in three regimes,” Phys. Rev. E 85, 021305 (2012).
35. T. Weinhart, A. R. Thornton, S. Luding, and O. Bokhove, “From discrete particles to continuum fields near a boundary,” Granular Matter 14, 289294 (2012).
36. J. Jenkins and M. Richman, “Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,” Phys. Fluids 28, 3485 (1985).
37. K. Saitoh and H. Hayakawa, “Weakly nonlinear analysis of two dimensional sheared granular flow,” Granular Matter 13, 697711 (2011).
38. F. Pacheco-Vázquez, G. Caballero-Robledo, J. Solano-Altamirano, E. Altshuler, A. Batista-Leyva, and J. Ruiz-Suárez, “Infinite penetration of a projectile into a granular medium,” Phys. Rev. Lett. 106, 218001 (2011).
39. C. Donahue, C. Hrenya, and R. Davis, “Stokes’ cradle: Newton's cradle with liquid coating,” Phys. Rev. Lett. 105, 034501 (2010).
40. C. Johnson, B. Kokelaar, R. Iverson, M. Logan, R. LaHusen, and J. Gray, “Grain-size segregation and levee formation in geophysical mass flows,” J. Geophysical Res. 117, F01032, doi:10.1029/2011JF002185 (2012).
41. D. Khakhar, A. V. Orpe, and J. Ottino, “Surface granular flows: two related examples,” Adv. Complex Syst. 4, 407417 (2001).
42. P. Jop, Y. Forterre, O. Pouliquen et al., “Crucial role of sidewalls in granular surface flows: Consequences for the rheology,” J. Fluid Mech. 541, 167 (2005).
43. Y. Fan and K. Hill, “Phase transitions in shear-induced segregation of granular materials,” Phys. Rev. Lett. 106, 218301 (2011).
44. J. Gray and A. Thornton, “A theory for particle size segregation in shallow granular free-surface flows,” Proc. R. Soc. London 461, 14471473 (2005).
45. T. Börzsönyi, B. Szabó, G. Törös, S. Wegner, J. Török, E. Somfai, T. Bien, and R. Stannarius, “Orientational order and alignment of elongated particles induced by shear,” Phys. Rev. Lett. 108, 228302 (2012).
46. M. Sommerfeld, “Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence,” Int. J. Multiphase Flow 27, 18291858 (2001).
47. O. Simonin, E. Deutsch, and J. P. Minier, Eulerian Prediction of the Fluid/Particle Correlated Motion in Turbulent Two-phase Flows (Springer, 1993).
48. E. Meneguz and M. W. Reeks, “Statistical properties of particle segregation in homogeneous isotropic turbulence,” J. Fluid Mech. 686, 338 (2011).
49. R. H. A. Ijzermans, E. Meneguz, and M. W. Reeks, “Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion,” J. Fluid Mech. 653, 99 (2010).
50. Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technol. 77, 7987 (1993).
51. S. Roy, A. Kemoun, M. H. Al-Dahhan, and M. P. Dudukovic, “Experimental investigation of the hydrodynamics in a liquid–solid riser,” AIChE J. 51, 802835 (2005).
52. A. R. Simha and S. Ramaswamy, “Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles,” Phys. Rev. Lett. 89, 05810110581014 (2002).
53. J.-F. Joanny and S. Ramaswamy, “A drop of active matter,” J. Fluid Mech. 705, 4657 (2012).
54. P. T. Underhill and M. D. Graham, “Correlations and fluctuations of stress and velocity in suspensions of swimming microorganisms,” Phys. Fluids 23, 121902 (2011).
55. X.-L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,” Phys. Rev. Lett. 84, 30173020 (2000).
56. G. Subramanian and D. L. Koch, “Critical bacterial concentration for the onset of collective swimming,” J. Fluid Mech. 632, 359 (2009).
57. D. Saintillan and M. J. Shelley, “Instabilities, pattern formation, and mixing in active suspensions,” Phys. Fluids 20, 123304 (2008).
58. A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson, “Enhanced mixing and spatial instability in concentrated bacterial suspensions,” Phys. Rev. E 80, 031903 (2009).
59. H. Brenner, “Rheology of a dilute suspension of dipolar spherical particles in an external field,” J. Colloid Interface Sci. 32, 141158 (1970).
60. L. Jibuti, S. Rafaï, and P. Peyla, “Suspensions with a tunable effective viscosity: A numerical study,” J. Fluid Mech. 693, 345366 (2012).
61. M. Garcia, S. Berti, P. Peyla, and S. Rafaï, “Random walk of a swimmer in a low-Reynolds-number medium,” Phys. Rev. E 83, 035301 (2011).
62. J. O. Kessler, “Hydrodynamic focusing of motile algal cells,” Nature (London) 313, 218220 (1985).
63. D. Saintillan, “Extensional rheology of active suspensions,” Phys. Rev. E 81, 056307 (2010).
64. P. Bhattacharjee, A. McDonnell, R. Prabhakar, L. Yeo, and J. Friend, “Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting,” New J. Phys. 13, 023005 (2011).
65. S. J. Ebbens and J. R. Howse, “In pursuit of propulsion at the nanoscale,” Soft Matter 6, 726738 (2010).
66. J. F. Brady, “Particle motion driven by solute gradients with application to autonomous motion: Continuum and colloidal perspectives,” J. Fluid Mech. 667, 216259 (2011).
67. S. Camalet and F. Julicher, “Generic aspects of axonemal beating,” New J. Phys. 2, 24 (2000).
68. C. B. Lindemann, “A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella,” J. Theor. Biol 168, 175189 (1994).
69. R. Davis, “Hydrodynamic diffusion of suspended particles: A symposium,” J. Fluid Mech. 310, 325335 (1996).
70. M. Denn, E. Meiburg, J. Morris, E. Shaqfeh, and T. Squires, “Report of the symposium on interactions for dispersed systems in Newtonian and viscoelastic fluids,” Phys. Fluids 18, 121501 (2006).
71. A. Acrivos and C. Delale, “Report on the IUTAM Symposium on Recent Advances in Multiphase Flows: Numerical and Experimental (11–14 June 2007, Istanbul, Turkey),” Phys. Fluids 20, 040501 (2008).
72. IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, Reggio Calabria, Italy, 14–18 September 2009, AIP Conference Proceedings Vol. 1227, edited by J. Goddard, J. Jenkins, and P. Giovine (American Institute of Physics, 2010).

Data & Media loading...


Article metrics loading...



This report summarizes the presentations and discussions conducted during the symposium, which was held under the aegis of the International Union of Theoretical and Applied Mechanics during 23–27 January 2012 in Bangalore, India.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd