1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Stochastic-field cavitation model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/7/10.1063/1.4813813
1.
1. Lord Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 9498 (1917).
2.
2. M. Bailey, V. Khokhlova, O. Sapozhnikov, S. Kargl, and L. Crum, “Physical mechanisms of the therapeutic effect of ultrasound (a review),” Acoust. Phys. 49(4), 369388 (2003).
http://dx.doi.org/10.1134/1.1591291
3.
3. C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316(8207), 12651268 (1980).
http://dx.doi.org/10.1016/S0140-6736(80)92335-1
4.
4. A. Spillman, “An environmentally friendly tool for the textile industry,” Agric. Res. 51(2), 10 (2003).
5.
5. A. G. Chakinala, P. R. Gogate, A. E. Burgess, and D. H. Bremner, “Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process,” Ultrason. Sonochem. 15(1), 4954 (2008).
http://dx.doi.org/10.1016/j.ultsonch.2007.01.003
6.
6. I. Biluš and A. Predin, “Numerical and experimental approach to cavitation surge obstruction in water pump,” Int. J. Numer. Methods Heat Fluid Flow 19(6–7), 818834 (2009).
http://dx.doi.org/10.1108/09615530910984091
7.
7. J.-H. Kim, I. Masao, E. Naoki, I. Koichi, W. Satoshi, and F. Akinori, “Suppression of cavitation surge of inducer by inserting axi-asymmetric obstacle plate,” Nihon Kikai Gakkai Ryutai Kogaku Bumon Koenkai Koen Ronbunshu (CD-ROM).
8.
8. R. E. A. Arndt, “Cavitation in fluid machinery and hydraulic structures,” Annu. Rev. Fluid Mech. 13(1), 273326 (1981).
http://dx.doi.org/10.1146/annurev.fl.13.010181.001421
9.
9. W. Satoshi, E. Naoki, I. Koichi, F. Akinori, and J.-H. Kim, “Suppression of cavitation surge of a helical inducer occurring in partial flow conditions,” Turbomachinery 32(2), 94100 (2004).
10.
10. S. Bernad, R. Susan-resiga, S. Muntean, and I. Anton, “Cavitation phenomena in hydraulic valves. Numerical modelling,” Proceedings of the Romanian academy, series A, Vol. 8(2), 2, (2007).
11.
11. J. P. Tullis, “Choking and supercavitating valves,” J. Hydr. Div. 97(12), 19311945 (1971).
12.
12. J.-P. Franc and J.-M. Michel, Fundamentals Of Cavitation (Springer, 2004).
13.
13. C. Brennen, Cavitation and Bubble Dynamics (Mcgraw Hill Book Co, 1995).
14.
14. A. M. Kamp, A. K. Chesters, C. Colin, and J. Fabre, “Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow,” Int. J. Multiphase Flow 27(8), 13631396 (2001).
http://dx.doi.org/10.1016/S0301-9322(01)00010-6
15.
15. B. Ran and J. Katz, “Pressure fluctuations and their effect on cavitation inception within water jets,” J. Fluid Mech. 262, 223263 (1994).
http://dx.doi.org/10.1017/S0022112094000492
16.
16. C. Martínez-Bazán, J. L. Montanes, and J. C. Lasheras, “On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency,” J. Fluid Mech. 401(1), 157182 (1999).
http://dx.doi.org/10.1017/S0022112099006680
17.
17. R. M. Thomas, “Brief communication bubble coalescence in turbulent flows,” Int. J. Multiphase Flow 7(6), 709717 (1981).
http://dx.doi.org/10.1016/0301-9322(81)90040-9
18.
18. Y. Delannoy and J. L. Kueny, “Two-phase flow approach in unsteady cavitation modelling,” in Cavitation and Multiphase Flow Forum (American Society of Mechanical Engineers, 1990), Vol. 98, pp. 153158.
19.
19. E. Goncalves and R. F. Patella, “Numerical simulation of cavitating flows with homogeneous models,” Comput. Fluids 38(9), 16821696 (2009).
http://dx.doi.org/10.1016/j.compfluid.2009.03.001
20.
20. S. Hickel, M. Mihatsch, and S. Schmidt, “Implicit large eddy simulation of cavitation in micro channel flows,” in WIMRC (University of Warwick, 2011).
21.
21. R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran, and T. R. Govindan, “A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction,” Comput. Fluids 29(8), 849875 (2000).
http://dx.doi.org/10.1016/S0045-7930(99)00039-0
22.
22. W. Yuan, J. Sauer, and G. H. Schnerr, “Modeling and computation of unsteady cavitation flows in injection nozzles,” Mec. Ind. Mater. 2(5), 383394 (2001).
23.
23. A. K. Singhal, M. M. Athavale, H. Li, and Y. Jiang, “Mathematical basis and validation of the full cavitation model,” J. Fluids Eng. 124(3), 617 (2002).
http://dx.doi.org/10.1115/1.1486223
24.
24. R. S. Meyer, M. L. Billet, and J. W. Holl, “Freestream nuclei and traveling-bubble cavitation,” J. Fluids Eng. 114(4), 672679 (1992).
http://dx.doi.org/10.1115/1.2910084
25.
25. A. Kubota, H. Kato, and H. Yamaguchi, “A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section,” J. Fluid Mech. 240, 5996 (1992).
http://dx.doi.org/10.1017/S002211209200003X
26.
26. F. Durst, D. Miloievic, and B. Schönung, “Eulerian and lagrangian predictions of particulate two-phase flows: A numerical study,” Appl. Math. Model. 8(2), 101115 (1984).
http://dx.doi.org/10.1016/0307-904X(84)90062-3
27.
27. R. Bannari, “Cavitation modelling based on Eulerian-Eulerian multiphase flow,” Ph.D. dissertation (Université de Sherbrooke, 2011).
28.
28. R. McGraw, “Description of aerosol dynamics by the quadrature method of moments,” Aerosol Sci. Technol. 27(2), 255265 (1997).
http://dx.doi.org/10.1080/02786829708965471
29.
29. D. L. Marchisio and R. O. Fox, “Solution of population balance equations using the direct quadrature method of moments,” J. Aerosol Sci. 36(1), 4373 (2005).
http://dx.doi.org/10.1016/j.jaerosci.2004.07.009
30.
30. C. Dopazo and E. E. O’Brien, “An approach to the autoignition of a turbulent mixture,” Acta Astronaut. 1(9–10), 12391266 (1974).
http://dx.doi.org/10.1016/0094-5765(74)90050-2
31.
31. D. C. Haworth, “Progress in probability density function methods for turbulent reacting flows,” Prog. Energy Combust. Sci. 36(2), 168259 (2010).
http://dx.doi.org/10.1016/j.pecs.2009.09.003
32.
32. N. S. Tavare, “Mixing, reaction, and precipitation: Interaction by exchange with mean micromixing models,” AIChE J. 41(12), 25372548 (1995).
http://dx.doi.org/10.1002/aic.690411204
33.
33. S. B. Pope, “FDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11(2), 119192 (1985).
http://dx.doi.org/10.1016/0360-1285(85)90002-4
34.
34. L. Valiño, “A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow,” Flow, Turbul. Combust. 60(2), 157172 (1998).
http://dx.doi.org/10.1023/A:1009968902446
35.
35. A. Garmory, E. S. Richardson, and E. Mastorakos, “Micromixing effects in a reacting plume by the Stochastic Fields method,” Atmos. Environ. 40(6), 10781091 (2006).
http://dx.doi.org/10.1016/j.atmosenv.2005.11.002
36.
36. W. P. Jones and A. Tyliszczak, “Large eddy simulation of spark ignition in a gas turbine combustor,” Flow, Turbul. Combust. 85(3–4), 711734 (2010).
http://dx.doi.org/10.1007/s10494-010-9289-9
37.
37. M. Bini, W. P. Jones, and C. Lettieri, “Large eddy simulation of spray atomization with stochastic modelling of breakup,” Proc. Eur. Combust. Meet. 22(11), 115106 (2009).
38.
38. S. B. Pope, “Self-conditioned fields for large-eddy simulations of turbulent flows,” J. Fluid Mech. 652, 139169 (2010).
http://dx.doi.org/10.1017/S0022112009994174
39.
39. A. H. Harvey and D. G. Friend, “Chapter 1-Physical properties of water,” in Aqueous Systems at Elevated Temperatures and Pressures (Academic Press, London, 2004), pp. 127.
40.
40. Y. Saito, R. Takami, I. Nakamori, and T. Ikohagi, “Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil,” Comput. Mech. 40(1), 8596 (2007).
http://dx.doi.org/10.1007/s00466-006-0086-1
41.
41. H. Shamsborhan, O. Coutier-Delgosha, G. Caignaert, and F. Abdel Nour, “Experimental determination of the speed of sound in cavitating flows,” Exp. Fluids 49(6), 13591373 (2010).
http://dx.doi.org/10.1007/s00348-010-0880-6
42.
42. W. J. Garland and B. J. Hand, “Simple functions for the fast approximation of light water thermodynamic properties,” Nucl. Eng. Des. 113(1), 2134 (1989).
http://dx.doi.org/10.1016/0029-5493(89)90293-8
43.
43. R. Balasubramaniam and NASA Glenn Research Center, Two Phase Flow Modeling Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity, NASA/CR-2006-214085 2006.
44.
44. F. F. Grinstein and C. Fureby, “On monotonically integrated large eddy simulation of turbulent flows based on FCT algorithms,” in Flux-Corrected Transport, edited by D. Kuzmin, R. Löhner, and S. Turek (Springer, Berlin, 2005), pp. 79104.
45.
45. R. Friedrich, B. Geurts, and O. Métais, Direct and Large-Eddy Simulation V (Springer, 2004).
46.
46. A. Jameson, W. Schmidt, and E. Turkel, “Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes,” in AIAA, 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, 23–25 June 1981 (1981), paper 1259.
47.
47. W. P. Jones and V. N. Prasad, “Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method,” Combust. Flame 157(9), 16211636 (2010).
http://dx.doi.org/10.1016/j.combustflame.2010.05.010
48.
48. W. P. Jones and S. Navarro-Martinez, “Large Eddy Simulation and the filtered probability density function method,” AIP Conf. Proc. 1190, 3962 (2009).
http://dx.doi.org/10.1063/1.3290167
49.
49. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, 1985).
50.
50. O. Soulard and V. A. Sabel'nikov, “Eulerian Monte Carlo method for the joint velocity and mass-fraction probability density function in turbulent reactive gas flows,” Combust. Explos. Shock Waves 42(6), 753762 (2006).
http://dx.doi.org/10.1007/s10573-006-0111-x
51.
51. J.-P. Minier and E. Peirano, “The pdf approach to turbulent polydispersed two-phase flows,” Phys. Rep. 352(1–3), 1214 (2001).
http://dx.doi.org/10.1016/S0370-1573(01)00011-4
52.
52. M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation,” Annu. Rev. Fluid Mech. 9(1), 145185 (1977).
http://dx.doi.org/10.1146/annurev.fl.09.010177.001045
53.
53. F. Magagnato, B. Fritz, and M. Gabi, “Prediction of the resonance characteristic of combustion chambers on the basis of large-eddy-simulation,” J. Therm. Sci. 14(2), 156161 (2005).
http://dx.doi.org/10.1007/s11630-005-0027-x
54.
54. S. Barre, J. Rolland, G. Boitel, E. Goncalves, and R. F. Patella, “Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation,” Eur. J. Mech. B/Fluids 28(3), 444464 (2009).
http://dx.doi.org/10.1016/j.euromechflu.2008.09.001
55.
55. J. Fröhlich, Large Eddy Simulation Turbulenter Strömungen (Vieweg/Teubner, Verlag, 2006).
56.
56. A. Dzubur, B. Bajic, and I. Jovanovic, “On the applicability of the Coulter counter to the cavitation nuclei size distribution analysis,” Int. Shipbuild. Prog. 40(422), 165175 (1993).
57.
57. T. J. O’Hern, L. d’ Agostino, and A. J. Acosta, “Comparison of holographic and coulter counter measurements of cavitation nuclei in the ocean,” American Institute of Aeronautics and Astronautics (Cincinnati, Ohio, 1988).
58.
58. E. Yilmaz, F. G. Hammitt, and A. Keller, “Cavitation inception thresholds in water and nuclei spectra by light-scattering technique,” J. Acoust. Soc. Am. 59(2), 329338 (1976).
http://dx.doi.org/10.1121/1.380867
59.
59. L. d’ Agostino and A. J. Acosta, “A cavitation susceptibility meter with optical cavitation monitoring – Part two: Experimental apparatus and results,” J. Fluids Eng. 113, 261 (1991).
http://dx.doi.org/10.1115/1.2909490
60.
60. B. Stutz and J.-L. Reboud, “Measurements within unsteady cavitation,” Exp. Fluids 29(6), 545552 (2000).
http://dx.doi.org/10.1007/s003480000122
61.
61. J. C. R. Hunt, “Vorticity and vortex dynamics in complex turbulent flows,” in Transactions of the Canadian Society for Mechanical Engineering (Canadian Society for Mechanical Engineering, 1987), Vol. 11, pp. 2135.
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/7/10.1063/1.4813813
Loading
/content/aip/journal/pof2/25/7/10.1063/1.4813813
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/7/10.1063/1.4813813
2013-07-25
2014-12-21

Abstract

Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/7/1.4813813.html;jsessionid=38epvcnot60cq.x-aip-live-02?itemId=/content/aip/journal/pof2/25/7/10.1063/1.4813813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Stochastic-field cavitation model
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/7/10.1063/1.4813813
10.1063/1.4813813
SEARCH_EXPAND_ITEM