1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Physics of rheologically enhanced propulsion: Different strokes in generalized Stokes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/25/8/10.1063/1.4818640
1.
1. G. J. Hancock, “The self-propulsion of microscopic organisms through liquids,” Proc. R. Soc. London, Ser. A 217, 96121 (1953).
http://dx.doi.org/10.1098/rspa.1953.0048
2.
2. R. E. Johnson and C. J. Brokaw, “Flagellar hydrodynamics: A comparison between resistive-force theory and slender-body theory,” Biophys. J. 25(1), 113127 (1979).
http://dx.doi.org/10.1016/S0006-3495(79)85281-9
3.
3. R. Cortez, “The method of regularized Stokeslets,” SIAM J. Sci. Comput. 23, 12041225 (2001).
http://dx.doi.org/10.1137/S106482750038146X
4.
4. G. I. Taylor, Low-Reynolds Number Flows (National Committee for Fluid Mechanics Films, 1997), available from http://web.mit.edu/hml/ncfmf.html.
5.
5. E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45, 311 (1977).
http://dx.doi.org/10.1119/1.10903
6.
6. D. Tam and A. E. Hosoi, “Optimal stroke patterns for Purcell's three-link swimmer,” Phys. Rev. Lett. 98(6), 068105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.068105
7.
7. E. Passov and Y. Or, “Dynamics of Purcell's three-link microswimmer with a passive elastic tail,” Eur. Phys. J. E 35(8), 78 (2012).
http://dx.doi.org/10.1140/epje/i2012-12078-9
8.
8. A. Najafi and R. Golestanian, “Simple swimmer at low Reynolds number: Three linked spheres,” Phys. Rev. E 69, 062901 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062901
9.
9. K. Polotzek and B. M. Friedrich, “A three-sphere swimmer for flagellar synchronization,” New J. Phys. 15, 045005 (2013).
http://dx.doi.org/10.1088/1367-2630/15/4/045005
10.
10. R. Ledesma-Aguilar, H. Loewen, and J. M. Yeomans, “A circle swimmer at low Reynolds number,” Eur. Phys. J. E 35(8), 70 (2012).
http://dx.doi.org/10.1140/epje/i2012-12070-5
11.
11. F. Y. Ogrin, P. G. Petrov, and C. P. Winlove, “Ferromagnetic microswimmers,” Phys. Rev. Lett. 100, 21810212181024 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.218102
12.
12. S. K. Lai, Y. Y. Wang, D. Wirtz, and J. Hanes, “Micro-and macrorheology of mucus,” Adv. Drug Delivery Rev. 61(2), 86100 (2009).
http://dx.doi.org/10.1016/j.addr.2008.09.012
13.
13. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: From the natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95108 (2004).
http://dx.doi.org/10.1038/nrmicro821
14.
14. N. Verstraeten, K. Braeken, B. Debkumari, M. Fauvart, J. Fransaer, J. Vermant, and J. Michiels, “Living on a surface: Swarming and biofilm formation,” Trends Microbiol. 16(10), 496506 (2008).
http://dx.doi.org/10.1016/j.tim.2008.07.004
15.
15. G. R. Fulford, D. F. Katz, and R. L. Powell, “Swimming of spermatozoa in a linear viscoelastic fluid,” Biorheology 35, 295310 (1998).
http://dx.doi.org/10.1016/S0006-355X(99)80012-2
16.
16. T. Normand and E. Lauga, “Flapping motion and force generation in a viscoelastic fluid,” Phys. Rev. E 78(6), 061907 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061907
17.
17. E. Lauga, “Life at high Deborah number,” Europhys. Lett. 86, 64001 (2009).
http://dx.doi.org/10.1209/0295-5075/86/64001
18.
18. G. J. Elfring, O. S. Pak, and E. Lauga, “Two-dimensional flagellar synchronization in viscoelastic fluids,” J. Fluid Mech. 646, 505 (2010).
http://dx.doi.org/10.1017/S0022112009994010
19.
19. X. N. Shen and P. E. Arratia, “Undulatory swimming in viscoelastic fluids,” Phys. Rev. Lett. 106(20), 208101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.208101
20.
20. E. Lauga, “Propulsion in a viscoelastic fluid,” Phys. Fluids 19, 083104108310413 (2007).
http://dx.doi.org/10.1063/1.2751388
21.
21. H. C. Fu, C. W. Wolgemuth, and T. R. Powers, “Swimming speeds of filaments in nonlinearly viscoelastic fluids,” Phys. Fluids 21, 033102103310210 (2009).
http://dx.doi.org/10.1063/1.3086320
22.
22. L. Zhu, E. Lauga, and L. Brandt, “Self-propulsion in viscoelastic fluids: Pushers vs. pullers,” Phys. Fluids 24(5), 051902105190217 (2012).
http://dx.doi.org/10.1063/1.4718446
23.
23. J. Teran, L. Fauci, and M. Shelley, “Viscoelastic fluid response can increase the speed and efficiency of a free swimmer,” Phys. Rev. Lett. 104, 03810110381014 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.038101
24.
24. S. K. Lai, D. E. O'Hanlon, S. Harrold, S. T. Man, Y. Y. Wang, R. Cone, and J. Hanes, “Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus,” Proc. Natl. Acad. Sci. U.S.A. 104(5), 1482 (2007).
http://dx.doi.org/10.1073/pnas.0608611104
25.
25. D. F. Katz and S. A. Berger, “Flagellar propulsion of human sperm in cervical mucus,” Biorheology 17(1–2), 169 (1980).
26.
26. N. J. Balmforth, D. Coombs, and S. Pachmann, “Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids,” Q. J. Mech. Appl. Math. 63(3), 267294 (2010).
http://dx.doi.org/10.1093/qjmam/hbq011
27.
27. X. Shen, D. Gagnon, and P. Arratia, “Undulatory swimming in shear-thinning fluids,” Bull. Am. Phys. Soc. 57, M1700005 (2012), http://meetings.aps.org/link/BAPS.2012.DFD.M17.5.
28.
28. T. D. Montenegro-Johnson, A. A. Smith, D. J. Smith, D. Loghin, and J. R. Blake, “Modelling the fluid mechanics of cilia and flagella in reproduction and development,” Eur. Phys. J. E 35(10), 111 (2012).
http://dx.doi.org/10.1140/epje/i2012-12111-1
29.
29. R. N. Mills and D. F. Katz, “A flat capillary tube system for assessment of sperm movement in cervical mucus,” Fertil. Steril. 29, 4347 (1978).
30.
30. D. F. Katz, J. W. Overstreet, and F. W. Hanson, “A new quantitative test for sperm penetration into cervical mucus,” Fertil. Steril. 33, 179 (1980).
31.
31. D. J. Smith, E. A. Gaffney, H. Gadêlha, N. Kapur, and J. C. Kirkman-Brown, “Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity,” Cell Motil. Cytoskeleton 66, 220236 (2009).
http://dx.doi.org/10.1002/cm.20345
32.
32. N. Phan-Thien, Understanding Viscoelasticity: Basics of Rheology (Springer Verlag, Berlin, 2002).
33.
33. P. J. Carreau, D. De Kee, and M. Daroux, “An analysis of the viscous behaviour of polymeric solutions,” Can. J. Chem. Eng. 57(2), 135140 (1979).
http://dx.doi.org/10.1002/cjce.5450570202
34.
34. J. J. L. Higdon, “A hydrodynamic analysis of flagellar propulsion,” J. Fluid Mech. 90, 685711 (1979).
http://dx.doi.org/10.1017/S0022112079002482
35.
35. G. I. Taylor, “Analysis of the swimming of microscopic organisms,” Proc. R. Soc. London, Ser. A 209, 447461 (1951).
http://dx.doi.org/10.1098/rspa.1951.0218
36.
36. A. T. Chwang and T. Y. Wu, “A note on the helical movement of micro-organisms,” Proc. R. Soc. London, Ser. B 178, 327346 (1971).
http://dx.doi.org/10.1098/rspb.1971.0068
37.
37. G. K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, New York, 1967).
38.
38. D. Crowdy, “Treadmilling swimmers near a no-slip wall at low Reynolds number,” Int. J. Non-Linear Mech. 46, 577585 (2011).
http://dx.doi.org/10.1016/j.ijnonlinmec.2010.12.010
39.
39. D. Crowdy, S. Lee, O. Samson, E. Lauga, and A. E. Hosoi, “A two-dimensional model of low-Reynolds number swimming beneath a free surface,” J. Fluid Mech. 681(1), 2447 (2011).
http://dx.doi.org/10.1017/jfm.2011.223
40.
40. C. S. Peskin, “Flow patterns around heart valves: A numerical method,” J. Comput. Phys. 10, 252271 (1972).
http://dx.doi.org/10.1016/0021-9991(72)90065-4
41.
41. L. J. Fauci and C. S. Peskin, “A computational model of aquatic animal locomotion,” J. Comput. Phys. 77, 85108 (1988).
http://dx.doi.org/10.1016/0021-9991(88)90158-1
42.
42. K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, “Direct measurement of the flow field around swimming microorganisms,” Phys. Rev. Lett. 105(16), 168101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.168101
43.
43. J. R. Blake and M. A. Sleigh, “Mechanics of ciliary locomotion,” Biol. Rev. 49, 85125 (1974).
http://dx.doi.org/10.1111/j.1469-185X.1974.tb01299.x
44.
44. S. Childress, Mechanics of Swimming and Flying (Cambridge University Press, Cambridge, 1981).
45.
45. C. Brennen and H. Winet, “Fluid mechanics of propulsion by cilia and flagella,” Annu. Rev. Fluid Mech. 9, 339398 (1977).
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
46.
46. J. R. Blake, “A spherical envelope approach to ciliary propulsion,” J. Fluid Mech. 46, 199208 (1971).
http://dx.doi.org/10.1017/S002211207100048X
47.
47. T. Ishikawa, M. P. Simmonds, and T. J. Pedley, “Hydrodynamic interaction of two swimming model micro-organisms,” J. Fluid Mech. 568, 119160 (2006).
http://dx.doi.org/10.1017/S0022112006002631
48.
48. Z. Lin, J. L. Thiffeault, and S. Childress, “Stirring by squirmers,” J. Fluid Mech. 669, 167177 (2011).
http://dx.doi.org/10.1017/S002211201000563X
49.
49. S. Michelin and E. Lauga, “Optimal feeding is optimal swimming for all Péclet numbers,” Phys. Fluids 23, 101901110190113 (2011).
http://dx.doi.org/10.1063/1.3642645
50.
50. S. T. Mortimer, “A critical review of the physiological importance and analysis of sperm movement in mammals,” Hum. Reprod. Update 3, 403439 (1997).
http://dx.doi.org/10.1093/humupd/3.5.403
51.
51. D. J. Smith, “A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow,” Proc. R. Soc. London, Ser. A 465(2112), 36053626 (2009).
http://dx.doi.org/10.1098/rspa.2009.0295
52.
52. J. R. Blake, “Self-propulsion due to oscillations on the surface of a cylinder at low Reynolds number,” Bull. Austral. Math. Soc. 5, 255264 (1971).
http://dx.doi.org/10.1017/S0004972700047134
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/8/10.1063/1.4818640
Loading
/content/aip/journal/pof2/25/8/10.1063/1.4818640
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/25/8/10.1063/1.4818640
2013-08-21
2014-10-25

Abstract

Shear-thinning is an important rheological property of many biological fluids, such as mucus, whereby the apparent viscosity of the fluid decreases with shear. Certain microscopic swimmers have been shown to progress more rapidly through shear-thinning fluids, but is this behavior generic to all microscopic swimmers, and what are the physics through which shear-thinning rheology affects a swimmer's propulsion? We examine swimmers employing prescribed stroke kinematics in two-dimensional, inertialess Carreau fluid: shear-thinning “generalized Stokes” flow. Swimmers are modeled, using the method of femlets, by a set of immersed, regularized forces. The equations governing the fluid dynamics are then discretized over a body-fitted mesh and solved with the finite element method. We analyze the locomotion of three distinct classes of microswimmer: (1) conceptual swimmers comprising sliding spheres employing both one- and two-dimensional strokes, (2) slip-velocity envelope models of ciliates commonly referred to as “squirmers,” and (3) monoflagellate pushers, such as sperm. We find that morphologically identical swimmers with different strokes may swim either faster or slower in shear-thinning fluids than in Newtonian fluids. We explain this kinematic sensitivity by considering differences in the viscosity of the fluid surrounding propulsive and payload elements of the swimmer, and using this insight suggest two reciprocal sliding sphere swimmers which violate Purcell's Scallop theorem in shear-thinning fluids. We also show that an increased flow decay rate arising from shear-thinning rheology is associated with a reduction in the swimming speed of slip-velocity squirmers. For sperm-like swimmers, a gradient of thick to thin fluid along the flagellum alters the force it exerts upon the fluid, flattening trajectories and increasing instantaneous swimming speed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/25/8/1.4818640.html;jsessionid=6c08viqc1tp0k.x-aip-live-02?itemId=/content/aip/journal/pof2/25/8/10.1063/1.4818640&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Physics of rheologically enhanced propulsion: Different strokes in generalized Stokes
http://aip.metastore.ingenta.com/content/aip/journal/pof2/25/8/10.1063/1.4818640
10.1063/1.4818640
SEARCH_EXPAND_ITEM