Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
2. A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, “Super rogue waves: Observation of a higher-order breather in water waves,” Phys. Rev. X 2(1), 011015 (2012).
3. M. Onorato, D. Proment, G. Clauss, and M. Klein, “Rogue waves: From nonlinear Schrödinger breather solutions to sea-keeping test,” PLoS ONE 8(2), e54629 (2013).
4. D. Chalikov, “Freak waves: Their occurrence and probability,” Phys. Fluids 21, 076602 (2009).
5. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature (London) 450, 10541057 (2007).
6. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790795 (2010).
7. H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
8. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528(2), 4789 (2013).
9. P. A. E. M. Janssen, “Nonlinear four-wave interaction and freak waves,” J. Phys. Oceanogr. 33(4), 863884 (2003).<863:NFIAFW>2.0.CO;2
10. C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” Eur. J. Mech. B/Fluid 21(5), 561577 (2003).
11. A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, International Geophysics Series Volume 97 (Elsevier, San Diego, 2010).
12. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540548 (2009).
13. V. Zakharov, “Stability of period waves of finite amplitude on surface of a deep fluid,” J. Appl. Mech. Tech. Phys. 9, 190194 (1968).
14. A. R. Osborne, M. Onorato, and M. Serio, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train,” Phys. Lett. A 275, 386393 (2000).
15. K. Dysthe, H. E. Krogstad, and P. Müller, “Oceanic rogue waves,” Annu. Rev. Fluid Mech. 40, 287310 (2008).
16. K. Trulsen, C. T. Stansberg, and M. G. Velarde, “Laboratory evidence of three-dimensional frequency downshift of waves in a long tank,” Phys. Fluids 11, 235 (1999).
17. A. V. Babanin, T. Waseda, T. Kinoshita, and A. Toffoli, “Wave breaking in directional fields,” J. Phys. Oceanogr. 41(1), 145156 (2011).
18. K. Trulsen and K. B. Dysthe, “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water,” Wave Motion 24, 281289 (1996).
19. K. Trulsen and K. B. Dysthe, “Frequency downshift in three-dimensional wave trains in a deep basin,” J. Fluid Mech. 352, 359373 (1997).
20. A. Slunyaev, C. Kharif, E. Pelinovsky, and T. Talipova, “Nonlinear wave focusing on water of finite depth,” Physica D 173(1–2), 7796 (2002).
21. F. R. S. Longuet-Higgins, “On the nonlinear transfer of energy in the peak of a gravity–wave spectrum: A simplified model,” Proc. R. Soc. London, Ser. A 347, 311328 (1976).
22. O. Gramstad and K. Trulsen, “Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth,” J. Fluid Mech. 670, 404426 (2011).
23. S. Haver and J. Andersen, “Freak waves: Rare realizations of a typical population or typical realizations of a rare population?” in Proceedings of the 10th International Offshore and Polar Engineering (ISOPE) Conference, Seattle, USA, May 2000.
24. K. Trulsen, “Weakly nonlinear sea surface waves—Freak waves and deterministic forecasting,” Geometric Modelling, Numerical Simulation, and Optimization (Springer, 2007), pp. 191209.
25. A. V. Babanin, T.-W. Hsu, A. Roland, S.-H. Ou, D.-J. Doong, and C. C. Kao, “Spectral wave modelling of typhoon krosa,” Nat. Hazards Earth Syst. Sci. 11(2), 501511 (2011).
26. H. Chien, C.-C. Kao, and L. Z. H. Chuang, “On the characteristics of observed coastal freak waves,” Coast. Eng. Japan 44(04), 301319 (2002).
27. T. B. Benjamin, “Instability of periodic wave trains in nonlinear dispersive systems,” Proc. R. Soc. London A299, 5975 (1967).
28. D. J. Benney and G. J. Roskes, “Wave instabilities,” Stud. Appl. Math. 48(377), 377385 (1969).
29. G. B. Whitham, Linear and Nonlinear Waves (Wiley Interscience, New York, 1974).
30. P. A. E. M. Janssen and M. Onorato, “The intermediate water depth limit of the Zakharov equation and consequences for wave prediction,” J. Phys. Oceanogr. 37, 23892400 (2007).
31. Ø. Kristiansen, D. Fructus, D. Clamond, and J. Grue, “Simulations of crescent water wave patterns on finite depth,” Phys. Fluids 17, 064101 (2005).
32. M. Francius and C. Kharif, “Three dimensional instabilities of periodic gravity waves in shallow water,” J. Fluid Mech. 561, 417437 (2006).
33. J. W. McLean, “Instabilities of finite-amplitude gravity waves on water of finite depth,” J. Fluid Mech. 114(1), 331341 (1982).
34. M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. E. M. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C. T. Stansberg, A. Toffoli, and K. Trulsen, “Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a 3d wave basin,” J. Fluid Mech. 627, 235257 (2009).
35. B. J. West, K. A. Brueckner, R. S. Jand, D. M. Milder, and R. L. Milton, “A new method for surface hydrodynamics,” J. Geophys. Res. 92(C11), 1180311824, doi:10.1029/JC092iC11p11803 (1987).
36. A. Toffoli, M. Benoit, M. Onorato, and E. M. Bitner-Gregersen, “The effect of third-order nonlinearity on statistical properties of random directional waves in finite depth,” Nonlinear Processes Geophys. 16, 131139 (2009).
37. M. Tanaka, “Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations,” J. Fluid Mech. 444, 199221 (2001).
38. A. Toffoli, O. Gramstad, K. Trulsen, J. Monbaliu, E. M. Bitner-Gregersen, and M. Onorato, “Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations,” J. Fluid Mech. 664, 313336 (2010).
39. E. Lo and C. C. Mei, “Numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation,” J. Fluid Mech. 150(3), 395416 (1985).
40. M. P. Tulin and T. Waseda, “Laboratory observation of wave group evolution, including breaking effects,” J. Fluid Mech. 378, 197232 (1999).

Data & Media loading...


Article metrics loading...



We present a laboratory experiment in a large directional wave basin to discuss the instability of a plane wave to oblique side band perturbations in finite water depth. Experimental observations, with the support of numerical simulations, confirm that a carrier wave becomes modulationally unstable even for relative water depths < 1.36 (with the wavenumber of the plane wave and the water depth), when it is perturbed by appropriate oblique disturbances. Results corroborate that the underlying mechanism is still a plausible explanation for the generation of rogue waves in finite water depth.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd