1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Symmetry and plate-like convection in fluids with temperature-dependent viscosity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/1/10.1063/1.4850296
1.
1. H. Benard, “Les tourbillons cellulaires dans une nappe liquide,” Rev. Gen. Sci. Pure Appl. 11, 12611271 (1900) available at http://gallica.bnf.fr/ark:/12148/bpt6k17075r/f1265.image.langEN.
2.
2. A. M. Mancho, H. Herrero, and J. Burguete, “Primary instabilities in convective cells due to nonuniform heating,” Phys. Rev. E 56(3), 2916 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.2916
3.
3. S. Hoyas, H. Herrero, and A. M. Mancho, “Bifurcation diversity of dynamic thermocapillary liquid layers,” Phys. Rev. E 66(5), 057301 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.057301
4.
4. S. Hoyas, A. M. Mancho, H. Herrero, N. Garnier, and A. Chiffaudel, “Bénard–Marangoni convection in a differentially heated cylindrical cavity,” Phys. Fluids 17, 054104 (2005).
http://dx.doi.org/10.1063/1.1876892
5.
5. M. C. Navarro, A. M. Mancho, and H. Herrero, “Instabilities in buoyant flows under localized heating,” Chaos 17, 023105 (2007).
http://dx.doi.org/10.1063/1.2714295
6.
6. S. D. King, J. P. Lowman, and C. W. Gable, “Episodic tectonic plate reorganizations driven by mantle convection,” Earth Planet. Sci. Lett. 203, 8391 (2002).
http://dx.doi.org/10.1016/S0012-821X(02)00852-X
7.
7. V. S. Solomatov and L. N. Moresi, “Three regimes of mantle convection with non-newtonian viscosity and stagnant lid convection on the terrestrial planets,” Geophys. Res. Lett. 24(15), 19071910, doi:10.1029/97GL01682 (1997).
http://dx.doi.org/10.1029/97GL01682
8.
8. S. C. Solomon, S. E. Smrekar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres, and E. R. Stofan, “Venus tectonics: An overview of Magellan observations,” J. Geophys. Res. 97, 13199132555, doi:10.1029/92JE01418 (1992).
http://dx.doi.org/10.1029/92JE01418
9.
9. P. Machetel and P. Weber, “Intermittent layered convection in a model mantle with an endothermic phase change at 670 km,” Nature (London) 350, 5557 (1991).
http://dx.doi.org/10.1038/350055a0
10.
10. G. T. Jarvis and D. P. Mckenzie, “Convection in a compressible fluid with infinite prandtl number, J. Fluid Mech. 96(03), 515583 (1980).
http://dx.doi.org/10.1017/S002211208000225X
11.
11. X. Liu and S. Zhong, “Analyses of marginal stability, heat transfer and boundary layer properties for thermal convection in a compressible fluid with infinite prandtl number,” Geophys. J. Int. 194, 125144 (2013).
http://dx.doi.org/10.1093/gji/ggt117
12.
12. A. M. Hofmeister and D. Yuen, “Critical phenomena in thermal conductivity: Implications for lower mantle dynamics,” J. Geodyn. 44, 186199 (2007).
http://dx.doi.org/10.1016/j.jog.2007.03.002
13.
13. F. Dubuffet, D. A. Yuan, and E. S. G. Rainey, “Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity,” Nonlinear Proc. Geophys. 9, 311323 (2002).
http://dx.doi.org/10.5194/npg-9-311-2002
14.
14. T. K. B. Yanagawa, M. Nakada, and D. A. Yuan, “The influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity,” Earth Space Sci. 57, 1528 (2005) available at http://www.terrapub.co.jp/journals/EPS/pdf/2005/5701/57010015.pdf.
15.
15. L. N. Moresi and V. S. Solomatov, “Numerical investigation of 2D convection with extremely large viscosity variations,” Phys. Fluids 7(9), 21542162 (1995).
http://dx.doi.org/10.1063/1.868465
16.
16. V. S. Solomatov and L. N. Moresi, “Stagnant lid convection on Venus,” J. Geophys. Res. 101, 47374753, doi:10.1029/95JE03361 (1996).
http://dx.doi.org/10.1029/95JE03361
17.
17. P. J. Tackley, “Self-consistent generation of tectonic plates in three dimensional mantle convection,” Earth Planet. Sci. Lett. 157, 922 (1998).
http://dx.doi.org/10.1016/S0012-821X(98)00029-6
18.
18. R. Trompert and U. Hansen, “Mantle convection simulations with reologies that generate plate-like behaviour,” Nature (London) 395, 686689 (1998).
http://dx.doi.org/10.1038/27185
19.
19. D. Bercovici, “The generation of plate tectonics from mantle convection,” Earth Planet. Sci. Lett. 205, 107121 (2003).
http://dx.doi.org/10.1016/S0012-821X(02)01009-9
20.
20. V. S. Solomatov, “Initiation of subduction by small-scale convection,” J. Geophys. Res. 109, B01412, doi:10.1029/2003JB002628 (2004).
http://dx.doi.org/10.1029/2003JB002628
21.
21. D. Forsyth and S. Uyeda, “On the relative importance of the driving forces of plate motion,” Geophys. J. R. Astron. Soc. 43, 163200 (1975).
http://dx.doi.org/10.1111/j.1365-246X.1975.tb00631.x
22.
22. M. Ulvrová, S. Labrosse, N. Coltice, P. Raback, and P. J. Tackley, “Numerical modelling of convection interacting with a melting and solidification front: Application to the thermal evolution of the basal magma ocean,” Phys. Earth Planet. Inter. 206–207, 5166 (2012).
http://dx.doi.org/10.1016/j.pepi.2012.06.008
23.
23. D. Armbruster, J. Guckenheimer, and P. Holmes, “Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry,” Physica D 29, 257282 (1988).
http://dx.doi.org/10.1016/0167-2789(88)90032-2
24.
24. J. Guckenheimer and P. Holmes, “Structurally stable heteroclinic cycles,” Math. Proc. Cambridge Philos. Soc. 103, 189192 (1988).
http://dx.doi.org/10.1017/S0305004100064732
25.
25. S. P. Dawson and A. M. Mancho, “Collections of heteroclinic cycles in the Kuramoto-Sivashinsky equation,” Physica D 100(3-4), 231256 (1997).
http://dx.doi.org/10.1016/S0167-2789(96)00209-6
26.
26. J. D. Crawford and E. Knobloch, “Symmetry and symmetry-breaking bifurcations in fluid dynamics,” Annu. Rev. Fluid Mech. 23, 341387 (1991).
http://dx.doi.org/10.1146/annurev.fl.23.010191.002013
27.
27. D. Ruelle, “Bifurcations in the presence of a symmetry group,” Arch. Ration. Mech. Anal. 51, 136152 (1973).
http://dx.doi.org/10.1007/BF00247751
28.
28. D. Rand, “Dynamics and symmetry: predictions for modulated waves in rotating fluids,” Arch. Ration. Mech. Anal. 79(1), 138 (1982).
http://dx.doi.org/10.1007/BF02416564
29.
29. J. Curbelo and A. M. Mancho, “Spectral numerical schemes for time-dependent convection with viscosity dependent on temperature,” Commun. Nonlinear Sci. Numer. Simul. 19, 538553 (2014).
http://dx.doi.org/10.1016/j.cnsns.2013.04.005
30.
30. J. Curbelo and A. M. Mancho, “Bifurcations and dynamics in convection with temperature-dependent viscosity under the presence of the O(2) symmetry,” Phys. Rev. E 88(4), 043005 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.043005
31.
31. F. H. Busse, “Pattern of convection in spherical shells,” J. Fluid Mech. 72, 6785 (1975).
http://dx.doi.org/10.1017/S0022112075002947
32.
32. F. H. Busse and N. Riahi, “Pattern of convection in spherical shells II,” J. Fluid Mech. 123, 283301 (1982).
http://dx.doi.org/10.1017/S0022112082003061
33.
33. P. Chossat, “Bifurcation and stability of convective flows in a rotating or not rotating spherical shell,” SIAM J. Appl. Math. 37, 624647 (1979).
http://dx.doi.org/10.1137/0137047
34.
34. M. Golubitsky and D. G. Schaeffer, “Bifurcation with O(3) symmetry including applications to the Bénard problem,” Commun. Pure. Appl. Math. 35, 8111 (1982).
http://dx.doi.org/10.1002/cpa.3160350105
35.
35. E. Ihrig and M. Golubitsky, “Pattern selection with O(3) symmetry,” Physica D 13, 133 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90268-9
36.
36. G. F. Davies, Dynamic Earth. Plates, Plumes and Mantle Convection. (Cambridge University Press, Cambridge, England, 2001).
37.
37. S. A. Weinstein, “Catastrophic overturn of the earth's mantle driven by multiple phase changes and internal heat generation,” Geophys. Res. Lett. 20, 101104, doi:10.1029/93GL00044 (1993).
http://dx.doi.org/10.1029/93GL00044
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4850296
Loading
/content/aip/journal/pof2/26/1/10.1063/1.4850296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/1/10.1063/1.4850296
2014-01-10
2014-09-30

Abstract

We explore the instabilities developed in a fluid in which viscosity depends on temperature. In particular, we consider a dependency that models a very viscous (and thus rather rigid) lithosphere over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value by a factor of 400 within a narrow temperature gap. We conduct a study which combines bifurcation analysis and time-dependent simulations. Solutions such as limit cycles are found that are fundamentally related to the presence of symmetry. Spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime emerge sporadically through abrupt bursts during these cycles. The plate-like evolution alternates motions towards either the right or the left, thereby introducing temporary asymmetries on the convecting styles. Further time-dependent regimes with stagnant and plate-like lids are found and described.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/1/1.4850296.html;jsessionid=6dgbaq1gk0ef4.x-aip-live-03?itemId=/content/aip/journal/pof2/26/1/10.1063/1.4850296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Symmetry and plate-like convection in fluids with temperature-dependent viscosity
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4850296
10.1063/1.4850296
SEARCH_EXPAND_ITEM