1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Comment on “Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation” [Phys. Fluids25, 085101 (2013)]
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/1/10.1063/1.4855296
1.
1. R. A. Van Gorder, “Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation,” Phys. Fluids 25, 085101 (2013).
http://dx.doi.org/10.1063/1.4816639
2.
2. D. K. Cheng, M. W. Cromar, and R. J. Donnelly, “Influence of an axial heat current on negative-ion trapping in rotating helium II,” Phys. Rev. Lett. 31, 433 (1973).
http://dx.doi.org/10.1103/PhysRevLett.31.433
3.
3. W. I. Glaberson, W. W. Johnson, and R. M. Ostermeier, “Instability of a vortex array in He II,” Phys. Rev. Lett. 33, 1197 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.1197
4.
4. R. M. Ostermeier and W. I. Glaberson, “Instability of vortex lines in the presence of axial normal fluid flow,” J. Low Temp. Phys. 21, 191 (1975).
http://dx.doi.org/10.1007/BF01141298
5.
5. C. F. Barenghi, M. Tsubota, A. Mitani, and T. Araki, “Transient growth of Kelvin waves on quantized vortices,” J. Low Temp. Phys. 134, 489 (2004).
http://dx.doi.org/10.1023/B:JOLT.0000012600.81530.6c
6.
6.In our notation we have included the factor 1/4π in γ and kept the units, since Van Gorder's notation is only partly dimensionless due to the units in a0. This has no effect on any of the equations below.
7.
7. R. Betchov, “On the curvature and torsion of an isolated vortex filament,” J. Fluid Mech. 22, 471 (1965).
http://dx.doi.org/10.1017/S0022112065000915
8.
8. M. Umeki, “A locally induced homoclinic motion of a vortex filament,” Theor. Comput. Fluid Dyn. 24, 383 (2010).
http://dx.doi.org/10.1007/s00162-009-0160-3
9.
9. H. Salman, “Breathers on quantized superfluid vortices,” Phys. Rev. Lett. 111, 165301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.165301
10.
10. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, “Thermal excitation of waves on quantized vortices,” Phys. Fluids 28, 498 (1985).
http://dx.doi.org/10.1063/1.865113
11.
11. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991), p. 214.
12.
12. B. K. Shivamoggi, “Vortex motion in superfluid 4He: Reformulation in the extrinsic vortex-filament coordinate space,” Phys. Rev. B 84, 012506 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.012506
13.
13. J. Laurie, V. S. L'vov, S. Nazarenko, and O. Rudenko, “Interaction of Kelvin waves and nonlocality of energy transfer in superfluids,” Phys. Rev. B 81, 104526 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.104526
14.
14. R. A. Van Gorder, “Fully nonlinear local induction equation describing the motion of a vortex filament in superfluid 4He,” J. Fluid Mech. 707, 585 (2012).
http://dx.doi.org/10.1017/jfm.2012.308
15.
15. R. A. Van Gorder, “Self-similar vortex dynamics in superfluid 4He under the Cartesian representation of the Hall-Vinen model including superfluid friction,” Phys. Fluids 25, 095105 (2013).
http://dx.doi.org/10.1063/1.4821809
16.
16. E. B. Sonin, “Dynamics of helical vortices and helical-vortex rings,” Europhys. Lett. 97, 46002 (2012).
http://dx.doi.org/10.1209/0295-5075/97/46002
17.
17. B. K. Shivamoggi and G. J. F. van Heijst, “Motion of a vortex filament in the local induction approximation: Reformulation of the Da Rios–Betchov equations in the extrinsic filament coordinate space,” Phys. Lett. A 374, 1742 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.02.015
18.
18. R. A. Van Gorder, “Motion of a vortex filament in the local induction approximation: a perturbative approach,” Theor. Comput. Fluid Dyn. 26, 161 (2012).
http://dx.doi.org/10.1007/s00162-010-0218-2
19.
19. R. A. Van Gorder, “Integrable stationary solution for the fully nonlinear local induction equation describing the motion of a vortex filament,” Theor. Comput. Fluid Dyn. 26, 591 (2012).
http://dx.doi.org/10.1007/s00162-011-0244-8
20.
20. M. Umeki, “A real-space representation for a locally induced motion of a vortex filament,” Theor. Appl. Mech. Jpn. 61, 195 (2013).
http://dx.doi.org/10.11345/nctam.61.195
21.
21. B. V. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.3647
22.
22. G. Boffetta, A. Celani, D. Dezzani, J. Laurie, and S. Nazarenko, “Modeling Kelvin wave cascades in superfluid helium,” J. Low Temp. Phys. 156, 193 (2009).
http://dx.doi.org/10.1007/s10909-009-9895-x
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4855296
Loading
/content/aip/journal/pof2/26/1/10.1063/1.4855296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/1/10.1063/1.4855296
2014-01-06
2014-07-13

Abstract

We comment on the paper by Van Gorder [“Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation,” Phys. Fluids25, 085101 (2013)]. We point out that the flow of the normal fluid component parallel to the vortex will often lead into the Donnelly–Glaberson instability, which will cause the amplification of the Kelvin wave. We explain why the comparison to local nonlinear equation is unreasonable, and remark that neglecting the motion in the -direction is not reasonable for a Kelvin wave with an arbitrary wavelength and amplitude. The correct equations in the general case are also derived.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/1/1.4855296.html;jsessionid=13yb1frp9afz1.x-aip-live-02?itemId=/content/aip/journal/pof2/26/1/10.1063/1.4855296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comment on “Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation” [Phys. Fluids25, 085101 (2013)]
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4855296
10.1063/1.4855296
SEARCH_EXPAND_ITEM