1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Lagrangian kinematics of steep waves up to the inception of a spilling breaker
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/1/10.1063/1.4860235
1.
1. A. Babanin, Breaking and Dissipation of Ocean Surface Waves (Cambridge Univ. Press, Cambridge, 2011).
2.
2. M. Perlin, W. Choi, and Z. Tian, “Breaking waves in deep and intermediate waters,” Annu. Rev. Fluid Mech. 45, 115145 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140721
3.
3. M. S. Longuet-Higgins, “Progress toward understanding how waves break,” Proceedings of 21st Symposium on Naval Hydrodyn, Trondheim, Norway (National Academy Press, Washington, DC, 1997), pp. 528.
4.
4. J. H. Duncan, H. Qiao, V. Philomin, and A. Wenz, “Gentle spilling breakers: Crest profile evolution,” J. Fluid Mech. 379, 191222 (1999).
http://dx.doi.org/10.1017/S0022112098003152
5.
5. H. Qiao and J. H. Duncan, “Gentle spilling breakers: Crest flow-field evolution,” J. Fluid Mech. 439, 5785 (2001).
http://dx.doi.org/10.1017/S0022112001004207
6.
6. J. Gemmrich, “On the occurrence of wave breaking,” Rogue Waves: Proceedings of ‘Aha Huliko'a Hawaiian Winter Workshop (Univ. Hawaii at Manoa, Honolulu, HI, 2005) pp. 123130.
7.
7. M. K. Ochi and C.-H. Tsai, “Prediction of breaking waves in deep water,” J. Phys. Oceanogr. 13, 20082019 (1983).
http://dx.doi.org/10.1175/1520-0485(1983)013<2008:POOOBW>2.0.CO;2
8.
8. P. Bonmarin, “Geometric properties of deep-water breaking waves,” J. Fluid Mech. 209, 405433 (1989).
http://dx.doi.org/10.1017/S0022112089003162
9.
9. A. Babanin, D. Chalikov, I. Young, and I. Savelyev, “Predicting the breaking onset of surface water waves,” Geophys. Res. Lett. 34, L07605, doi:10.1029/2006GL029135 (2007).
http://dx.doi.org/10.1029/2006GL029135
10.
10. A. Babanin, D. Chalikov, I. Young, and I. Savelyev, “Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water,” J. Fluid Mech. 644, 433463 (2010).
http://dx.doi.org/10.1017/S002211200999245X
11.
11. D. Chalikov and D. Sheinin, “Modelling extreme waves based on equations of potential flow with a free surface,” J. Comput. Phys. 210, 247273 (2005).
http://dx.doi.org/10.1016/j.jcp.2005.04.008
12.
12. O. M. Phillips, “The equilibrium range in the spectrum of wind generated waves,” J. Fluid Mech. 4, 426434 (1958).
http://dx.doi.org/10.1017/S0022112058000550
13.
13. M. S. Longuet-Higgins, “Accelerations in steep gravity waves,” J. Phys. Oceanogr. 15, 15701579 (1985).
http://dx.doi.org/10.1175/1520-0485(1985)015<1570:AISGW>2.0.CO;2
14.
14. L. Shemer, “On kinematics of very steep waves,” Nat. Hazards Earth Syst. Sci. 13, 21012107 (2013).
http://dx.doi.org/10.5194/nhess-13-2101-2013
15.
15. L. Shemer, K. Goulitski, and E. Kit, “Evolution of wide-spectrum wave groups in a tank: An experimental and numerical study,” Eur. J. Mech. B/Fluids 26, 193219 (2007).
http://dx.doi.org/10.1016/j.euromechflu.2006.06.004
16.
16. M. Tulin and M. Landrini, “Breaking waves in the ocean and around ships,” Proceedings of 23rd Symposium on Naval Hydrodyn, Val de Reuil, France (National Academy Press, Washington, DC, 2001) pp. 713745.
17.
17. M. Perlin, J. He, and L. P. Bernal, “An experimental study of deep water plunging breakers,” Phys. Fluids 8, 2365 (1996).
http://dx.doi.org/10.1063/1.869021
18.
18. W. K. Melville and R. J. Rapp, “The surface velocity field in steep and breaking waves,” J. Fluid Mech. 189, 122 (1988).
http://dx.doi.org/10.1017/S0022112088000898
19.
19. K.-A. Chang and P. L.-F. Liu, “Velocity, acceleration and vorticity under a breaking wave,” Phys. Fluids 10, 327329 (1998).
http://dx.doi.org/10.1063/1.869544
20.
20. T. E. Baldock, C. Swan, and P. H. Taylor, “A laboratory study of nonlinear surface waves on water,” Philos. Trans. R. Soc. London, Ser. A 354, 649676 (1996).
http://dx.doi.org/10.1098/rsta.1996.0022
21.
21. A. Jensen, D. Clamond, M. Huseby, and J. Grue, “On local and convective accelerations in steep wave events,” Ocean Eng. 34, 426435 (2007).
http://dx.doi.org/10.1016/j.oceaneng.2006.03.013
22.
22. J. Grue and A. Jensen, “Orbital velocity and breaking in steep random gravity waves,” J. Geophys. Res. 117, C07013, doi:10.1029/2012JC008024 (2012).
http://dx.doi.org/10.1029/2012JC008024
23.
23. M. L. Banner and D. H. Peregrine, “Wave breaking in deep water,” Annu. Rev. Fluid Mech. 25, 373397 (1993).
http://dx.doi.org/10.1146/annurev.fl.25.010193.002105
24.
24. P. Stansell and C. MacFarlane, “Experimental investigation of wave breaking criteria based on wave phase speeds,” J. Phys. Oceanogr. 32, 12691283 (2002).
http://dx.doi.org/10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2
25.
25. H. Wu and H. M. Nepf, “Breaking criteria and energy losses for three-dimensional wave breaking,” J. Geophys. Res. 107(C10), 3177, doi:10.1029/2001JC001077 (2002).
http://dx.doi.org/10.1029/2001JC001077
26.
26. M. C. Davis and E. E. Zarnick, “Testing ship models in transient waves,” Proceedings of 5th Symposium Naval Hydrodyn, Bergen, Norway, 1964, edited by J. K. Lunde and S. W. Doroff (US Office of Naval Research, Washington, DC, 1966), pp. 507543.
27.
27. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 1643 (1983).
http://dx.doi.org/10.1017/S0334270000003891
28.
28. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue waves observation in a water tank,” Phys. Rev. Lett. 106, 204502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.204502
29.
29. L. Shemer and L. AlperovichPeregrine breather revisited,” Phys. Fluids 25, 051701 (2013).
http://dx.doi.org/10.1063/1.4807055
30.
30. U.-Y. Pen, M.-C. Chang, and I. Lin, “Lagrangian-Eulerian dynamics of breaking shallow water waves through tracer tracking of fluid elements,” Phys. Rev. E 87, 023017 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.023017
31.
31. C.-C. Mei, M. Stiassnie, and D. K.-P. Yue, Theory and Applications of Ocean Surface Waves (World Scientific, Singapore, 2005).
32.
32. K. B. Dysthe, “Note on the modification of the nonlinear Schrödinger equation for application to deep water waves,” Proc. R. Soc. London, Ser. A 369, 105114 (1979).
http://dx.doi.org/10.1098/rspa.1979.0154
33.
33. D. Liberzon and L. Shemer, “Experimental study of the initial stages of wind waves’ spatial evolution,” J. Fluid Mech. 681, 462498 (2011).
http://dx.doi.org/10.1017/jfm.2011.208
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4860235
Loading
/content/aip/journal/pof2/26/1/10.1063/1.4860235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/1/10.1063/1.4860235
2014-01-07
2015-07-31

Abstract

Horizontal Lagrangian velocities and accelerations at the surface of steep water-waves are studied by Particle Tracking Velocimetry for gradually increasing crest heights up to the inception of a spilling breaker. Localized steep waves are excited using wavemaker-generated Peregrine breather-type wave trains. Actual crest and phase velocities are estimated from video recorded sequences of the instantaneous wave shape as well as from surface elevation measurements by wave gauges. Effects of nonlinearity and spectral width on phase velocity, as well as the relation between phase velocity and crest propagation speed are discussed. The inception of a spilling breaker is associated with the horizontal velocity of water particles at the crest attaining that of the crest, thus confirming the kinematic criterion for inception of breaking.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/1/1.4860235.html;jsessionid=e62cgpc34pst.x-aip-live-03?itemId=/content/aip/journal/pof2/26/1/10.1063/1.4860235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Lagrangian kinematics of steep waves up to the inception of a spilling breaker
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4860235
10.1063/1.4860235
SEARCH_EXPAND_ITEM