1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Propulsion by a helical flagellum in a capillary tube
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/1/10.1063/1.4861026
1.
1. T. A. Camesano and B. E. Logan, “Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media,” Environ. Sci. Technol. 32, 1699 (1998).
http://dx.doi.org/10.1021/es970996m
2.
2. M. Caldara, R. S. Friedlander, N. L. Kavanaugh, J. Aizenberg, K. R. Foster, and K. Ribbeck, “Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state,” Curr. Biol. 22, 2325 (2012).
http://dx.doi.org/10.1016/j.cub.2012.10.028
3.
3. R. Lux, J. N. Miller, N.-H. Park, and W. Shi, “Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola,” Infect. Immun. 69, 6276 (2001).
http://dx.doi.org/10.1128/IAI.69.10.6276-6283.2001
4.
4. P. D. Frymier and R. M. Ford, “Analysis of bacterial swimming speed approaching a solid-liquid interface,” AIChE J. 43, 1341 (1997).
http://dx.doi.org/10.1002/aic.690430523
5.
5. S. A. Biondi, J. A. Quinn, and H. Goldfine, “Random motility of swimming bacteria in restricted geometries,” AIChE J. 44, 1923 (1998).
http://dx.doi.org/10.1002/aic.690440822
6.
6. M. Ramia, D. Tullock, and N. Phan-Thien, “The role of hydrodynamic interaction in the locomotion of microorganisms,” Biophys. J. 65, 755 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81129-9
7.
7. Z. Liu, W. Chen, and K. D. Papadopoulos, “Bacterial motility, collisions, and aggregation in a 3-μm-diameter capillary,” Biotechnol. Bioeng. 53, 238241 (1997).
http://dx.doi.org/10.1002/(SICI)1097-0290(19970120)53:2<238::AID-BIT16>3.0.CO;2-G
8.
8. A. Dechesne, G. Wang, G. Gülez, D. Or, and B. F. Smets, “Hydration controlled bacterial motility and dispersal on surfaces,” Proc. Natl. Acad. Sci. U.S.A. 107, 14369 (2010).
http://dx.doi.org/10.1073/pnas.1008392107
9.
9. W. R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D. B. Weibel, H. C. Berg, and G. M. Whitesides, “Escherichia coli swim on the right-hand side,” Nature (London) 435, 1271 (2005).
http://dx.doi.org/10.1038/nature03660
10.
10. J. Männik, R. Driessen, P. Galajda, J. E. Keymer, and C. Dekker, “Bacterial growth and motility in sub-micron constrictions,” Proc. Natl. Acad. Sci. U.S.A. 106, 14861 (2009).
http://dx.doi.org/10.1073/pnas.0907542106
11.
11. J. Gray and G. J. Hancock, “The propulsion of sea-urchin spermatozoa,” J. Exp. Biol. 32, 802 (1955).
12.
12. J. Lighthill, “Flagellar hydrodynamics,” SIAM Rev. 18, 161 (1976).
http://dx.doi.org/10.1137/1018040
13.
13. E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977).
http://dx.doi.org/10.1119/1.10903
14.
14. E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601 (2009).
http://dx.doi.org/10.1088/0034-4885/72/9/096601
15.
15. S. Koyasu and Y. Shirakihara, “Caulobacter crescentus flagellar filament has a right-handed helical form,” J. Mol. Biol. 173, 125 (1984).
http://dx.doi.org/10.1016/0022-2836(84)90407-8
16.
16. N. Darnton, L. Turner, K. Breuer, and H. Berg, “Moving fluid with bacterial carpets,” Biophys. J. 86, 1863 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74253-8
17.
17. B. Scharf, “Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: Flagellar rotation and pH-induced polymorphic transitions,” J. Bacteriol. 184, 5979 (2002).
http://dx.doi.org/10.1128/JB.184.21.5979-5986.2002
18.
18. N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, “On torque and tumbling in swimming Escherichia coli,” J. Bacteriol. 189, 1756 (2007).
http://dx.doi.org/10.1128/JB.01501-06
19.
19. W. R. Hesse and M. J. Kim, “Visualization of flagellar interactions on bacterial carpets,” J. Microscopy 233, 302 (2009).
http://dx.doi.org/10.1111/j.1365-2818.2009.03119.x
20.
20. R. M. Macnab and M. K. Ornston, “Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force,” J. Mol. Biol. 112, 1 (1977).
http://dx.doi.org/10.1016/S0022-2836(77)80153-8
21.
21. M. D. Manson, P. M. Tedesco, and H. C. Berg, “Energetics of flagellar rotation in bacteria,” J. Mol. Biol. 138, 541 (1980).
http://dx.doi.org/10.1016/S0022-2836(80)80017-9
22.
22. L. Zhu, E. Lauga, and L. Brandt, “Low-Reynolds-number swimming in a capillary tube,” J. Fluid Mech. 726, 285 (2013).
http://dx.doi.org/10.1017/jfm.2013.225
23.
23. B. Liu, K. S. Breuer, and T. R. Powers, “Helical swimming in Stokes flow using a novel boundary-element method,” Phys. Fluids 25, 061902 (2013).
http://dx.doi.org/10.1063/1.4812246
24.
24. E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A. Stone, “Swimming in circles: Motion of bacteria near solid,” Biophys. J. 90, 400 (2006).
http://dx.doi.org/10.1529/biophysj.105.069401
25.
25. B. Liu, T. R. Powers, and K. S. Breuer, “Force-free swimming of a model helical flagellum in viscoelastic fluids,” Proc. Natl. Acad. Sci. U.S.A. 108, 19516 (2011).
http://dx.doi.org/10.1073/pnas.1113082108
26.
26. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, England, 1992).
27.
27. B. U. Felderhof, “Swimming at low Reynolds number of a cylindrical body in a circular tube,” Phys. Fluids 22, 113604 (2010).
http://dx.doi.org/10.1063/1.3522861
28.
28. C. Darwin, “Note on hydrodynamics,” Proc. Camb. Phil. Soc. 49, 342 (2008).
http://dx.doi.org/10.1017/S0305004100028449
29.
29. D. O. Pushkin, H. Shum, and J. M. Yeomans, “Fluid transport by individual microswimmers,” J. Fluid Mech. 726, 5 (2013).
http://dx.doi.org/10.1017/jfm.2013.208
30.
30. D. F. Katz, “On the propulsion of micro-organisms near solid boundaries,” J. Fluid Mech. 64, 33 (1974).
http://dx.doi.org/10.1017/S0022112074001984
31.
31. J. C. Chrispell, L. J. Fauci, and M. Shelley, “An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid,” Phys. Fluids 25, 013103 (2013).
http://dx.doi.org/10.1063/1.4789410
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4861026
Loading
/content/aip/journal/pof2/26/1/10.1063/1.4861026
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/1/10.1063/1.4861026
2014-01-08
2014-07-26

Abstract

We study the microscale propulsion of a rotating helical filament confined by a cylindrical tube, using a boundary-element method for Stokes flow that accounts for helical symmetry. We determine the effect of confinement on swimming speed and power consumption. Except for a small range of tube radii at the tightest confinements, the swimming speed at fixed rotation rate increases monotonically as the confinement becomes tighter. At fixed torque, the swimming speed and power consumption depend only on the geometry of the filament centerline, except at the smallest pitch angles for which the filament thickness plays a role. We find that the “normal” geometry of flagella is optimized for swimming efficiency, independent of the degree of confinement. The efficiency peaks when the arc length of the helix within a pitch matches the circumference of the cylindrical wall. We also show that a swimming helix in a tube induces a net flow of fluid along the tube.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/1/1.4861026.html;jsessionid=20p794pt9umed.x-aip-live-03?itemId=/content/aip/journal/pof2/26/1/10.1063/1.4861026&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Propulsion by a helical flagellum in a capillary tube
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4861026
10.1063/1.4861026
SEARCH_EXPAND_ITEM