1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dynamics of a nanodroplet under a transmission electron microscope
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/1/10.1063/1.4862801
1.
1. J. Klein, “Fluid dynamics: Smart polymer solutions,” Nature (London) 405, 745 (2000).
http://dx.doi.org/10.1038/35015645
2.
2. T. Boland, X. Tao, B. J. Damon, B. Manley, P. Kesari, S. Jalota, and S. Bhadur, “Drop-on-demand printing of cells and materials for designer tissue constructs,” Mater. Sci. Eng. C 27, 372 (2007).
http://dx.doi.org/10.1016/j.msec.2006.05.047
3.
3. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution Inkjet printing of all-polymer transistor circuits,” Science 290, 2123 (2000).
http://dx.doi.org/10.1126/science.290.5499.2123
4.
4. D. Argyris, P. D. Ashby, and A. Striolo, “Structure and orientation of interfacial water determine atomic force microscopy results: Insight from molecular dynamics simulations,” ACS Nano 5(3), 2215 (2011).
http://dx.doi.org/10.1021/nn103454m
5.
5. N. Sedighi, S. Murad, and S. K. Aggarwal, “Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size,” Fluid Dyn. Res. 42, 035501 (2010).
http://dx.doi.org/10.1088/0169-5983/42/3/035501
6.
6. M. Fuentes-Cabrera, B. H. Rhodes, M. I. Baskes, H. Terrones, J. D. Fowlkes, M. L. Simpson, and P. D. Rack, “Controlling the velocity of jumping nanodroplets via their initial shape and temperature,” ACS Nano 5(9), 7130 (2011).
http://dx.doi.org/10.1021/nn2018254
7.
7. P.-G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. 57, 827 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.827
8.
8. U. Thiele, “Thin film evolution from (evaporating) dewetting liquid layers to epitaxial growth,” J. Phys.: Condens. Matter 22, 084019 (2010).
http://dx.doi.org/10.1088/0953-8984/22/8/084019
9.
9. A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys. 69(3), 931 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.931
10.
10. N. Tretyakov, M. Müller, D. Todorova, and U. Thiele, “Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case,” J. Chem. Phys. 138, 064905 (2013).
http://dx.doi.org/10.1063/1.4790581
11.
11. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309, 2043 (2005).
http://dx.doi.org/10.1126/science.1116505
12.
12. J. W. G. Tyrrell and P. Attard, “Images of nanobubbles on hydrophobic surfaces and their interactions,” Phys. Rev. Lett. 87(17), 176104 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.176104
13.
13. E. R. White, M. Mecklenburg, S. B. Singer, S. Aloni, and B. C. Regan, “Imaging nanobubbles in water with scanning transmission electron microscopy,” Appl. Phys. Express 4, 055201 (2011).
http://dx.doi.org/10.1143/APEX.4.055201
14.
14. U. M. Mirsaidov, H. Zheng, D. Bhattacharya, Y. Casana, and P. Matsudaira, “Direct observation of stick-slip movements of water nanodroplets induced by an electron beam,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7187 (2012).
http://dx.doi.org/10.1073/pnas.1200457109
15.
15. U. M. Mirsaidov, C. D. Ohl, and P. Matsudaira, “A direct observation of nanometer-size void dynamics in an ultra-thin water film,” Soft Matter 8, 7108 (2012).
http://dx.doi.org/10.1039/c2sm25331c
16.
16. B. Martin, Nuclear and Particle Physics, 2nd ed. (Wiley, Chichester, 2009), p. 122.
17.
17. H. Chraïbi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: Optical and viscous nonlinear effects,” Eur. Phys. J. E 32, 43 (2010).
http://dx.doi.org/10.1140/epje/i2010-10605-4
18.
18. R. Wunenburger, A. Casner, and J.-P. Delville, “Light-induced deformation and instability of a liquid interface. I. Statics,” Phys. Rev. E 73, 036314 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.036314
19.
19. R. Wunenburger, A. Casner, and J.-P. Delville, “Light-induced deformation and instability of a liquid interface. II. Dynamics,” Phys. Rev. E 73, 036315 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.036315
20.
20. A. Casner and J.-P. Delville, “Laser-sustained liquid bridges,” Europhys. Lett. 65(3), 337 (2004).
http://dx.doi.org/10.1209/epl/i2003-10097-y
21.
21. A. Melchinger and S. Hofmann, “Dynamic double layer model: Description of time dependent charging phenomena in insulators under electron beam irradiation,” J. Appl. Phys. 78(10), 6224 (1995).
http://dx.doi.org/10.1063/1.360569
22.
22. F. Mugele and J.-C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17, R705 (2005).
http://dx.doi.org/10.1088/0953-8984/17/28/R01
23.
23. S. I. Betelú and M. A. Fontelos, “Spreading of a charged microdroplet,” Physica D 209, 28 (2005).
http://dx.doi.org/10.1016/j.physd.2005.06.013
24.
24. M. A. Fontelos and U. Kindelan, “The shape of charged drops over a solid surface and symmetry-breaking instabilities,” SIAM J. Appl. Math. 69(1), 126 (2008).
http://dx.doi.org/10.1137/080713707
25.
25. Z. Lin, T. Kerle, S. M. Baker, D. A. Hoagland, E. Schäffer, U. Steiner, and T. P. Russell, “Electric field induced instabilities at liquid/liquid interfaces,” J. Chem. Phys. 114, 2377 (2001).
http://dx.doi.org/10.1063/1.1338125
26.
26. Z. Lin, T. Kerle, T. P. Russell, E. Schäffer, and U. Steiner, “Structure formation at the interface of liquid-liquid bilayer in electric field,” Macromolecules 35, 3971 (2002).
http://dx.doi.org/10.1021/ma0122425
27.
27. R. Verma, A. Sharma, K. Kargupta, and J. Bhaumik, “Electric field induced instability and pattern formation in thin liquid films,” Langmuir 21, 3710 (2005).
http://dx.doi.org/10.1021/la0472100
28.
28. R. V. Craster and O. K. Matar, “Electrically induced pattern formation in thin leaky dielectric films,” Phys. Fluids 17, 032104 (2005).
http://dx.doi.org/10.1063/1.1852459
29.
29. D. Tseluiko and D. T. Papageorgiou, “Nonlinear dynamics of electrified thin liquid films,” SIAM J. Appl. Math. 67, 1310 (2006).
http://dx.doi.org/10.1137/060663532
30.
30. P. Beltrame, P. Hänggi, and U. Thiele, “Depinning of three-dimensional drops from wettability defects,” Europhys. Lett. 86, 24006 (2009).
http://dx.doi.org/10.1209/0295-5075/86/24006
31.
31. P. Beltrame, E. Knobloch, P. Hänggi, and U. Thiele, “Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrate,” Phys. Rev. E 83, 016305 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.016305
32.
32. D. Herde, U. Thiele, S. Herminghaus, and M. Brinkmann, “Driven large contact droplets on chemically heterogeneous substrates,” Europhys. Lett. 100, 16002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/16002
33.
33. S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L. Biferale, and M. Sbragaglia, “Stick-slip sliding of water drops on chemically heterogeneous surfaces,” Phys. Rev. Lett. 111, 066101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.066101
34.
34. A. Moosavi, M. Rauscher, and S. Dietrich, “Motion of nanodroplets near chemical heterogeneities,” Langmuir 24, 734 (2008).
http://dx.doi.org/10.1021/la7017677
35.
35. C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Inf. Sci. 35(1), 85 (1971).
http://dx.doi.org/10.1016/0021-9797(71)90188-3
36.
36. N. Savva and S. Kalliadasis, “Two-dimensional droplet spreading over topological substrates,” Phys. Fluids 21, 092102 (2009).
http://dx.doi.org/10.1063/1.3223628
37.
37. R. Vellingiri, N. Savva, and S. Kalliadasis, “Droplet spreading on chemically heterogeneous substrates,” Phys. Rev. E 84, 036305 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.036305
38.
38. L. Schwartz and R. R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Inf. Sci. 202, 173 (1998).
http://dx.doi.org/10.1006/jcis.1998.5448
39.
39. U. Thiele and E. Knobloch, “On the depinning of a driven drop on a heterogeneous substrate,” New J. Phys. 8, 313 (2006).
http://dx.doi.org/10.1088/1367-2630/8/12/313
40.
40. N. Savva, S. Kalliadasis, and G. A. Pavliotis, “Two dimensional droplet spreading over random topographical substrates,” Phys. Rev. Lett. 104, 084501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.084501
41.
41. N. Savva, G. A. Pavliotis, and S. Kalliadasis, “Contact lines over random topographical substrates. Part II. Dynamics,” J. Fluid Mech. 672, 384 (2011).
http://dx.doi.org/10.1017/S0022112010005987
42.
42. J. R. Melcher and G. I. Taylor, “Electrohydrodynamics: A review of the role of interfacial shear stresses,” Annu. Rev. Fluid Mech. 1, 111 (1969).
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
43.
43. S. Å. Ellingsen and I. Brevik, “Static and dynamic response of a fluid-fluid interface to electric point and line charge,” Ann. Phys. 327, 2899 (2012).
http://dx.doi.org/10.1016/j.aop.2012.09.001
44.
44. R. C. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys. 17(1), 333 (1949).
http://dx.doi.org/10.1063/1.1747247
45.
45. H. M. Lu and Q. Jiang, “Size dependent surface tension and Tolman's length of droplets,” Langmuir 21, 779 (2005).
http://dx.doi.org/10.1021/la0489817
46.
46. R. Tsekov and B. V. Toshev, “Capillary pressure of van der Waals liquid nanodrop,” Colloid J. 74(2), 266 (2012).
http://dx.doi.org/10.1134/S1061933X12020135
47.
47. U. Thiele, “Note on thin film equations for solutions and suspensions,” Eur. Phys. J. Spec. Top. 197, 213 (2011).
http://dx.doi.org/10.1140/epjst/e2011-01462-7
48.
48. N.-T. Nguyen, “Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale,” Microfluid. Nanofluid. 12, 1 (2012).
http://dx.doi.org/10.1007/s10404-011-0903-5
49.
49. H. Chraïbi, D. Lasseux, and E. Arquis, “Stretching and squeezing of sessile dielectric drops by the optical radiation pressure,” Phys. Rev. E 77, 066706 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066706
50.
50. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75740-2
51.
51. H. Zheng, S. A. Claridge, A. M. Minor, A. P. Alivisatos, and U. Dahmen, “Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscope,” Nano Lett. 9(6), 2460 (2009).
http://dx.doi.org/10.1021/nl9012369
52.
52. C. Champion, “Theoretical cross sections for electron collisions in water: Structure of electron tracks,” Phys. Med. Biol. 48, 2147 (2003).
http://dx.doi.org/10.1088/0031-9155/48/14/308
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4862801
Loading
/content/aip/journal/pof2/26/1/10.1063/1.4862801
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/1/10.1063/1.4862801
2014-01-24
2014-12-27

Abstract

We investigate the cyclical stick-slip motion of water nanodroplets on a hydrophilic substrate viewed with and stimulated by a transmission electron microscope. Using a continuum long wave theory, we show how the electrostatic stress imposed by non-uniform charge distribution causes a pinned convex drop to deform into a toroidal shape, with the shape characterized by the competition between the electrostatic stress and the surface tension of the drop, as well as the charge density distribution which follows a Poisson equation. A horizontal gradient in the charge density creates a lateral driving force, which when sufficiently large, overcomes the pinning induced by surface heterogeneities in the substrate disjoining pressure, causing the drop to slide on the substrate via a cyclical stick-slip motion. Our model predicts step-like dynamics in drop displacement and surface area jumps, qualitatively consistent with experimental observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/1/1.4862801.html;jsessionid=224saal5q3g2.x-aip-live-02?itemId=/content/aip/journal/pof2/26/1/10.1063/1.4862801&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamics of a nanodroplet under a transmission electron microscope
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/1/10.1063/1.4862801
10.1063/1.4862801
SEARCH_EXPAND_ITEM