Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Klein, “Fluid dynamics: Smart polymer solutions,” Nature (London) 405, 745 (2000).
2. T. Boland, X. Tao, B. J. Damon, B. Manley, P. Kesari, S. Jalota, and S. Bhadur, “Drop-on-demand printing of cells and materials for designer tissue constructs,” Mater. Sci. Eng. C 27, 372 (2007).
3. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution Inkjet printing of all-polymer transistor circuits,” Science 290, 2123 (2000).
4. D. Argyris, P. D. Ashby, and A. Striolo, “Structure and orientation of interfacial water determine atomic force microscopy results: Insight from molecular dynamics simulations,” ACS Nano 5(3), 2215 (2011).
5. N. Sedighi, S. Murad, and S. K. Aggarwal, “Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size,” Fluid Dyn. Res. 42, 035501 (2010).
6. M. Fuentes-Cabrera, B. H. Rhodes, M. I. Baskes, H. Terrones, J. D. Fowlkes, M. L. Simpson, and P. D. Rack, “Controlling the velocity of jumping nanodroplets via their initial shape and temperature,” ACS Nano 5(9), 7130 (2011).
7. P.-G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. 57, 827 (1985).
8. U. Thiele, “Thin film evolution from (evaporating) dewetting liquid layers to epitaxial growth,” J. Phys.: Condens. Matter 22, 084019 (2010).
9. A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys. 69(3), 931 (1997).
10. N. Tretyakov, M. Müller, D. Todorova, and U. Thiele, “Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case,” J. Chem. Phys. 138, 064905 (2013).
11. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309, 2043 (2005).
12. J. W. G. Tyrrell and P. Attard, “Images of nanobubbles on hydrophobic surfaces and their interactions,” Phys. Rev. Lett. 87(17), 176104 (2001).
13. E. R. White, M. Mecklenburg, S. B. Singer, S. Aloni, and B. C. Regan, “Imaging nanobubbles in water with scanning transmission electron microscopy,” Appl. Phys. Express 4, 055201 (2011).
14. U. M. Mirsaidov, H. Zheng, D. Bhattacharya, Y. Casana, and P. Matsudaira, “Direct observation of stick-slip movements of water nanodroplets induced by an electron beam,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7187 (2012).
15. U. M. Mirsaidov, C. D. Ohl, and P. Matsudaira, “A direct observation of nanometer-size void dynamics in an ultra-thin water film,” Soft Matter 8, 7108 (2012).
16. B. Martin, Nuclear and Particle Physics, 2nd ed. (Wiley, Chichester, 2009), p. 122.
17. H. Chraïbi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: Optical and viscous nonlinear effects,” Eur. Phys. J. E 32, 43 (2010).
18. R. Wunenburger, A. Casner, and J.-P. Delville, “Light-induced deformation and instability of a liquid interface. I. Statics,” Phys. Rev. E 73, 036314 (2006).
19. R. Wunenburger, A. Casner, and J.-P. Delville, “Light-induced deformation and instability of a liquid interface. II. Dynamics,” Phys. Rev. E 73, 036315 (2006).
20. A. Casner and J.-P. Delville, “Laser-sustained liquid bridges,” Europhys. Lett. 65(3), 337 (2004).
21. A. Melchinger and S. Hofmann, “Dynamic double layer model: Description of time dependent charging phenomena in insulators under electron beam irradiation,” J. Appl. Phys. 78(10), 6224 (1995).
22. F. Mugele and J.-C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17, R705 (2005).
23. S. I. Betelú and M. A. Fontelos, “Spreading of a charged microdroplet,” Physica D 209, 28 (2005).
24. M. A. Fontelos and U. Kindelan, “The shape of charged drops over a solid surface and symmetry-breaking instabilities,” SIAM J. Appl. Math. 69(1), 126 (2008).
25. Z. Lin, T. Kerle, S. M. Baker, D. A. Hoagland, E. Schäffer, U. Steiner, and T. P. Russell, “Electric field induced instabilities at liquid/liquid interfaces,” J. Chem. Phys. 114, 2377 (2001).
26. Z. Lin, T. Kerle, T. P. Russell, E. Schäffer, and U. Steiner, “Structure formation at the interface of liquid-liquid bilayer in electric field,” Macromolecules 35, 3971 (2002).
27. R. Verma, A. Sharma, K. Kargupta, and J. Bhaumik, “Electric field induced instability and pattern formation in thin liquid films,” Langmuir 21, 3710 (2005).
28. R. V. Craster and O. K. Matar, “Electrically induced pattern formation in thin leaky dielectric films,” Phys. Fluids 17, 032104 (2005).
29. D. Tseluiko and D. T. Papageorgiou, “Nonlinear dynamics of electrified thin liquid films,” SIAM J. Appl. Math. 67, 1310 (2006).
30. P. Beltrame, P. Hänggi, and U. Thiele, “Depinning of three-dimensional drops from wettability defects,” Europhys. Lett. 86, 24006 (2009).
31. P. Beltrame, E. Knobloch, P. Hänggi, and U. Thiele, “Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrate,” Phys. Rev. E 83, 016305 (2011).
32. D. Herde, U. Thiele, S. Herminghaus, and M. Brinkmann, “Driven large contact droplets on chemically heterogeneous substrates,” Europhys. Lett. 100, 16002 (2012).
33. S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L. Biferale, and M. Sbragaglia, “Stick-slip sliding of water drops on chemically heterogeneous surfaces,” Phys. Rev. Lett. 111, 066101 (2013).
34. A. Moosavi, M. Rauscher, and S. Dietrich, “Motion of nanodroplets near chemical heterogeneities,” Langmuir 24, 734 (2008).
35. C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Inf. Sci. 35(1), 85 (1971).
36. N. Savva and S. Kalliadasis, “Two-dimensional droplet spreading over topological substrates,” Phys. Fluids 21, 092102 (2009).
37. R. Vellingiri, N. Savva, and S. Kalliadasis, “Droplet spreading on chemically heterogeneous substrates,” Phys. Rev. E 84, 036305 (2011).
38. L. Schwartz and R. R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Inf. Sci. 202, 173 (1998).
39. U. Thiele and E. Knobloch, “On the depinning of a driven drop on a heterogeneous substrate,” New J. Phys. 8, 313 (2006).
40. N. Savva, S. Kalliadasis, and G. A. Pavliotis, “Two dimensional droplet spreading over random topographical substrates,” Phys. Rev. Lett. 104, 084501 (2010).
41. N. Savva, G. A. Pavliotis, and S. Kalliadasis, “Contact lines over random topographical substrates. Part II. Dynamics,” J. Fluid Mech. 672, 384 (2011).
42. J. R. Melcher and G. I. Taylor, “Electrohydrodynamics: A review of the role of interfacial shear stresses,” Annu. Rev. Fluid Mech. 1, 111 (1969).
43. S. Å. Ellingsen and I. Brevik, “Static and dynamic response of a fluid-fluid interface to electric point and line charge,” Ann. Phys. 327, 2899 (2012).
44. R. C. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys. 17(1), 333 (1949).
45. H. M. Lu and Q. Jiang, “Size dependent surface tension and Tolman's length of droplets,” Langmuir 21, 779 (2005).
46. R. Tsekov and B. V. Toshev, “Capillary pressure of van der Waals liquid nanodrop,” Colloid J. 74(2), 266 (2012).
47. U. Thiele, “Note on thin film equations for solutions and suspensions,” Eur. Phys. J. Spec. Top. 197, 213 (2011).
48. N.-T. Nguyen, “Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale,” Microfluid. Nanofluid. 12, 1 (2012).
49. H. Chraïbi, D. Lasseux, and E. Arquis, “Stretching and squeezing of sessile dielectric drops by the optical radiation pressure,” Phys. Rev. E 77, 066706 (2008).
50. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767 (2001).
51. H. Zheng, S. A. Claridge, A. M. Minor, A. P. Alivisatos, and U. Dahmen, “Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscope,” Nano Lett. 9(6), 2460 (2009).
52. C. Champion, “Theoretical cross sections for electron collisions in water: Structure of electron tracks,” Phys. Med. Biol. 48, 2147 (2003).

Data & Media loading...


Article metrics loading...



We investigate the cyclical stick-slip motion of water nanodroplets on a hydrophilic substrate viewed with and stimulated by a transmission electron microscope. Using a continuum long wave theory, we show how the electrostatic stress imposed by non-uniform charge distribution causes a pinned convex drop to deform into a toroidal shape, with the shape characterized by the competition between the electrostatic stress and the surface tension of the drop, as well as the charge density distribution which follows a Poisson equation. A horizontal gradient in the charge density creates a lateral driving force, which when sufficiently large, overcomes the pinning induced by surface heterogeneities in the substrate disjoining pressure, causing the drop to slide on the substrate via a cyclical stick-slip motion. Our model predicts step-like dynamics in drop displacement and surface area jumps, qualitatively consistent with experimental observations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd