Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/10/10.1063/1.4897918
1.
1. T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385 (2002).
http://dx.doi.org/10.1016/S0360-1285(02)00005-9
2.
2. J. C. Lasheras, L. T. Yap, and F. L. Dryer, “Effect of the ambient pressure on the explosive burning of emulsified and multicomponent fuel droplets,” Proc. Combust. Inst. 20, 1761 (1984).
http://dx.doi.org/10.1016/S0082-0784(85)80673-1
3.
3. F. L. Dryer, “Water addition to practical combustion systems – Concepts and applications,” Proc. Combust. Inst. 16, 279 (1977).
http://dx.doi.org/10.1016/S0082-0784(77)80332-9
4.
4. H. Watanabe and K. Okazaki, “Visualization of secondary atomization in emulsified-fuel spray flow by shadow imaging,” Proc. Combust. Inst. 34, 1651 (2013).
http://dx.doi.org/10.1016/j.proci.2012.07.005
5.
5. M. Fuchihata, T. Ida, and Y. Mizutani, “Observation of microexplosions in spray flames of light oil-water emulsions (2nd report, influence of temporal and spatial resolution in high speed videography),” J. Jpn. Soc. Mech. Eng. B 69, 1503 (2003).
http://dx.doi.org/10.1299/kikaia.69.1503
6.
6. E. Mura, P. Massoli, C. Josset, K. Loubar, and J. Bellettre, “Study of the micro-explosion temperature of water in oil emulsion droplets during the Leidenfrost effect,” Exp. Therm. Fluid Sci. 43, 63 (2012).
http://dx.doi.org/10.1016/j.expthermflusci.2012.03.027
7.
7. D. Segawa, H. Yamasaki, T. Kadota, H. Tanaka, H. Enomoto, and M. Tsue, “Water-coalescence in an oil-in-water emulsion droplet burning under microgravity,” Proc. Combust. Inst. 28, 985 (2000).
http://dx.doi.org/10.1016/S0082-0784(00)80305-7
8.
8. V. Califano, R. Calabria, and P. Massoli, “Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions,” Fuel 117, 87 (2014).
http://dx.doi.org/10.1016/j.fuel.2013.08.073
9.
9. Y. Suzuki, T. Harada, H. Watanabe, M. Shoji, Y. Matsushita, H. Aoki, and T. Miura, “Visualization of aggregation process of dispersed water droplets and the effect of aggregation on secondary atomization of emulsified fuel droplets,” Proc. Combust. Inst. 33, 2063 (2011).
http://dx.doi.org/10.1016/j.proci.2010.05.115
10.
10. H. Z. Sheng, L. Chen, Z. P. Zhang, C. K. Wu, C. An, and C. Q. Cheng, “The droplet group microexplosions in water-in-oil emulsion sprays and their effects on Diesel engine combustion,” Proc. Combust. Inst. 25, 175 (1994).
http://dx.doi.org/10.1016/S0082-0784(06)80642-9
11.
11. C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125 (1980).
http://dx.doi.org/10.1016/0010-2180(80)90080-2
12.
12. C. K. Law, “Recent advances in droplet vaporization and combustion,” Prog. Energy Combust. Sci. 8, 171 (1982).
http://dx.doi.org/10.1016/0360-1285(82)90011-9
13.
13. W. A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays (Cambridge University Press, Cambridge, 2010).
14.
14. C. H. Wang, X. Q. Liu, and C. K. Law, “Combustion and microexplosion of freely falling multicomponent droplets,” Combust. Flame 56, 175 (1984).
http://dx.doi.org/10.1016/0010-2180(84)90036-1
15.
15. J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121, 379 (1982).
http://dx.doi.org/10.1017/S0022112082001955
16.
16. D. L. Frost, “Dynamics of explosive boiling of a droplet,” Phys. Fluids 31, 2554 (1988).
http://dx.doi.org/10.1063/1.866608
17.
17. W. B. Fu, L. Y. Hou, L. Wang, and F. H. Ma, “A unified model for the micro-explosion of emulsified droplets of oil and water,” Fuel Process. Technol. 79, 107 (2002).
http://dx.doi.org/10.1016/S0378-3820(02)00106-6
18.
18. Y. Zeng and C. F. Lee, “Modeling droplet breakup processes under micro-explosion conditions,” Proc. Combust. Inst. 31, 2185 (2007).
http://dx.doi.org/10.1016/j.proci.2006.07.237
19.
19. D. Tarlet, J. Bellettre, M. Tazerout, and C. Rahmouni, “Prediction of micro-explosion delay of emulsified fuel droplets,” Int. J. Therm. Sci. 48, 449 (2009).
http://dx.doi.org/10.1016/j.ijthermalsci.2008.05.005
20.
20. H. Watanabe, Y. Matsushita, H. Aoki, and T. Miura, “Numerical simulation of emulsified fuel spray combustion with puffing and micro-explosion,” Combust. Flame 157, 839 (2010).
http://dx.doi.org/10.1016/j.combustflame.2010.01.013
21.
21. H. Watanabe, Y. Suzuki, T. Harada, H. Aoki, and T. Miura, “Development of a mathematical model for predicting water vapor mass generated in micro-explosion,” Energy 36, 4089 (2011).
http://dx.doi.org/10.1016/j.energy.2011.04.038
22.
22. J. Shinjo and A. Umemura, “Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation,” Int. J. Multiphase Flow 36, 513 (2010).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
23.
23. J. Shinjo and A. Umemura, “Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects),” Proc. Combust. Inst. 33, 2089 (2011).
http://dx.doi.org/10.1016/j.proci.2010.07.006
24.
24. J. Shinjo and A. Umemura, “Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray,” Proc. Combust. Inst. 34, 1553 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.074
25.
25. G. Wozniak, R. Balasubramaniam, P. H. Hadland, and R. S. Subramanian, “Temperature fields in a liquid due to the thermocapillary motion of bubbles and drops,” Exp. Fluids 31, 84 (2001).
http://dx.doi.org/10.1007/s003480000262
26.
26. S. Nas and G. Tryggvason, “Thermocapillary interaction of two bubbles or drops,” Int. J. Multiphase Flow 29, 1117 (2003).
http://dx.doi.org/10.1016/S0301-9322(03)00084-3
27.
27. C. T. Avedisian and I. Glassman, “Superheating and boiling of water in hydrocarbons at high pressures,” Int. J. Heat Mass Transfer 24, 695 (1981).
http://dx.doi.org/10.1016/0017-9310(81)90013-2
28.
28. C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14, 695 (1985).
http://dx.doi.org/10.1063/1.555734
29.
29. M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114, 146 (1994).
http://dx.doi.org/10.1006/jcph.1994.1155
30.
30. M. Sussman and E. G. Puckett, “A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows,” J. Comput. Phys. 162, 301 (2000).
http://dx.doi.org/10.1006/jcph.2000.6537
31.
31. T. Kunugi, “Direct numerical algorithm for multiphase flow with free surfaces and interfaces,” J. Jpn. Soc. Mech. Eng. B 63, 1576 (1997).
http://dx.doi.org/10.1299/kikaib.63.1576
32.
32. T. Himeno and T. Watanabe, “Thermo-fluid management under low-gravity conditions (2nd report: free-surface flows driven by surface forces),” J. Jpn. Soc. Mech. Eng. B 69, 2400 (2003).
http://dx.doi.org/10.1299/kikaib.69.2400
33.
33. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys. 100, 335 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
34.
34. S. Tanguy, T. Ménard, and A. Berlemont, “A level set method for vaporizing two-phase flows,” J. Comput. Phys. 221, 837 (2007).
http://dx.doi.org/10.1016/j.jcp.2006.07.003
35.
35. D. Juric and G. Tryggvason, “Computations of boiling flows,” Int. J. Multiphase Flow 24, 387 (1998).
http://dx.doi.org/10.1016/S0301-9322(97)00050-5
36.
36. A. Esmaeeli and G. Tryggvason, “Computations of explosive boiling in microgravity,” J. Sci. Comput. 19, 163 (2003).
http://dx.doi.org/10.1023/A:1025347823928
37.
37. H. Takewaki, A. Nishiguchi, and T. Yabe, “Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations,” J. Comput. Phys. 61, 261 (1985).
http://dx.doi.org/10.1016/0021-9991(85)90085-3
38.
38. T. Yabe, F. Xiao, and T. Utsumi, “The constrained interpolation profile method for multiphase analysis,” J. Comput. Phys. 169, 556 (2001).
http://dx.doi.org/10.1006/jcph.2000.6625
39.
39. D. Igra and K. Takayama, “Numerical simulation of shock wave interaction with a water column,” Shock Waves 11, 219 (2001).
http://dx.doi.org/10.1007/PL00004077
40.
40. S. W. J. Welch and J. Wilson, “A volume of fluid based method for fluid flows with phase change,” J. Comput. Phys. 160, 662 (2000).
http://dx.doi.org/10.1006/jcph.2000.6481
41.
41. H. Lamb, Hydrodynamics (Dover, New York, 1945).
42.
42. O. A. Basaran, “Nonlinear oscillations of viscous liquid drops,” J. Fluid Mech. 241, 169 (1992).
http://dx.doi.org/10.1017/S002211209200199X
43.
43.NIST (National Institute of Standards and Technology) web database, see http://webbook.nist.gov/chemistry/fluid/.
44.
44. M. S. Plesset and S. A. Zwick, “The growth of vapor bubbles in superheated liquids,” J. Appl. Phys. 25, 493 (1954).
http://dx.doi.org/10.1063/1.1721668
45.
45. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).
46.
46. B. B. Mikic, W. M. Rohsenow, and P. Griffith, “On bubble growth rates,” Int. J. Heat Mass Transfer 13, 657 (1970).
http://dx.doi.org/10.1016/0017-9310(70)90040-2
47.
47. A. Prosperetti and M. S. Plesset, “The stability of an evaporating liquid surface,” Phys. Fluids 27, 1590 (1984).
http://dx.doi.org/10.1063/1.864814
48.
48. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/10/10.1063/1.4897918
Loading
/content/aip/journal/pof2/26/10/10.1063/1.4897918
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/10/10.1063/1.4897918
2014-10-20
2016-12-02

Abstract

The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/10/1.4897918.html;jsessionid=UKKQYLgZz6C3S9EP780GA475.x-aip-live-02?itemId=/content/aip/journal/pof2/26/10/10.1063/1.4897918&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/10/10.1063/1.4897918&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/10/10.1063/1.4897918'
Right1,Right2,Right3,