Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Falkovich, A. Fouxon, and M. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature 419, 151154 (2002).
2. R. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183227 (2003).
3. E. Balkovsky, G. Falkovich, and A. Fouxon, “Intermittent distribution of inertial particles in turbulent flows,” Phys. Rev. Lett. 86, 27902793 (2001).
4. J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, “Heavy particle concentration in turbulence at dissipative and inertial scales,” Phys. Rev. Lett. 98, 084502 (2007).
5. E.-W. Saw, R. A. Shaw, S. Ayyalasomayajula, P. Y. Chuang, and A. Gylfason, “Inertial clustering of particles in high-Reynolds-number turbulence,” Phys. Rev. Lett. 100, 214501 (2008).
6. G. P. Bewley, E.-W. Saw, and E. Bodenschatz, “Observation of the sling effect,” New J. Phys. 15, 083051 (2013).
7. M. Wilkinson, B. Mehlig, and V. Bezuglyy, “Caustic activation of rain showers,” Phys. Rev. Lett. 97, 048501 (2006).
8. G. Falkovich and A. Pumir, “Sling effect in collisions of water droplets in turbulent clouds,” J. Atmos. Sci. 64, 44974505 (2007).
9. M. Orme, “Experiments on droplet collisions, bounce, coalescence and disruption,” Prog. Energy Combust. Sci. 23, 6579 (1997).
10. R. J. Hill, “Geometric collision rates and trajectories of cloud droplets falling into a Burgers vortex,” Phys. Fluids 17, 037103 (2005).
11. A. Daitche and T. Tél, “Memory effects are relevant for chaotic advection of inertial particles,” Phys. Rev. Lett. 107, 244501 (2011).
12. K. Chang, G. P. Bewley, and E. Bodenschatz, “Experimental study of the influence of anisotropy on the inertial scales of turbulence,” J. Fluid Mech. 692, 464 (2012).
13. W. H. Walton and W. C. Prewett, “The production of sprays and mists of uniform drop size by means of spinning disc type sprayers,” Proc. Phys. Soc., London, Sect. B 62, 341350 (1949).
14. N. Ouellette, H. Xu, M. Bourgoin, and E. Bodenschatz, “An experimental study of turbulent relative dispersion models,” New J. Phys. 8, 109 (2006).
15. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods (SIAM, 1977), Vol. 2.
16. S. Chen and X. Shan, “High-resolution turbulent simulations using the connection machine-2,” Comput. Phys. 6, 643646 (1992).
17. P. Kailasnath, K. Sreenivasan, and G. Stolovitzky, “Probability density of velocity increments in turbulent flows,” Phys. Rev. Lett. 68, 27662769 (1992).
18. K. Gustavsson and B. Mehlig, “Distribution of relative velocities in turbulent aerosols,” Phys. Rev. E 84, 045304 (2011).
19. K. Gustavsson and B. Mehlig, “Relative velocities of inertial particles in turbulent aerosols,” J. Turbul. 15, 3469 (2014).
20. M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids 26, 883889 (1983).
21. A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola, “Universality and saturation of intermittency in passive scalar turbulence,” Phys. Rev. Lett. 84, 2385 (2000).
22. J. Bec, L. Biferale, M. Cencini, A. Lanotte, and F. Toschi, “Intermittency in the velocity distribution of heavy particles in turbulence,” J. Fluid Mech. 646, 527536 (2010).
23. E.-W. Saw, J. P. Salazar, L. R. Collins, and R. A. Shaw, “Spatial clustering of polydisperse inertial particles in turbulence: I. Comparing simulation with theory,” New J. Phys. 14, 105030 (2012).
24. U. Frisch, Turbulence (Cambridge University Press, Cambridge, UK, 1996).
25. G. Paladin and A. Vulpiani, “Anomalous scaling laws in multifractal objects,” Phys. Rep. 156, 147225 (1987).
26. C. Meneveau and K. Sreenivasan, “The multifractal nature of turbulent energy dissipation,” J. Fluid Mech. 224, 429484 (1991).
27. M. Broniatowski and P. Mignot, “A self-adaptive technique for the estimation of the multifractal spectrum,” Stat. Probab. Lett. 54, 125135 (2001).
28. W. van de Water and P. Schram, “Generalized dimensions from near-neighbor information,” Phys. Rev. A 37, 3118 (1988).

Data & Media loading...


Article metrics loading...



We compare experiments and direct numerical simulations to evaluate the accuracy of the Stokes-drag model, which is used widely in studies of inertial particles in turbulence. We focus on statistics at the dissipation scale and on extreme values of relative particle velocities for moderately inertial particles ( < 1). The probability distributions of relative velocities in the simulations were qualitatively similar to those in the experiments. The agreement improved with increasing Stokes number and decreasing relative velocity. Simulations underestimated the probability of extreme events, which suggests that the Stokes drag model misses important dynamics. Nevertheless, the scaling behavior of the extreme events in both the experiments and the simulations can be captured by the same multi-fractal model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd