Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/11/10.1063/1.4901958
1.
1. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature (London) 389, 827829 (1997).
http://dx.doi.org/10.1038/39827
2.
2. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, 756765 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
3.
3. H. Hu and R. G. Larson, “Analysis of the microfluid flow in an evaporating sessile droplet,” Langmuir 21, 39633971 (2005).
http://dx.doi.org/10.1021/la047528s
4.
4. D. L. Koch and G. Subramanian, “Collective hydrodynamics of swimming microorganisms: Living fluids,” Annu. Rev. Fluid Mech. 43, 637659 (2011).
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
5.
5. X. L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,” Phys. Rev. Lett. 84, 30173020 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3017
6.
6. M. J. Kim and K. S. Breuer, “Enhanced diffusion due to motile bacteria,” Phys. Fluids 16, L78L81 (2004).
http://dx.doi.org/10.1063/1.1787527
7.
7. I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, “Bacterial swimming and oxygen transport near contact lines,” Proc. Natl. Acad. Sci. U.S.A. 102, 22772282 (2005).
http://dx.doi.org/10.1073/pnas.0406724102
8.
8. A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson, “Enhanced mixing and spatial instability in concentrated bacterial suspensions,” Phys. Rev. E 80, 031903 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031903
9.
9. M. A. Bees, P. Andresn, E. Mosekilde, and M. Givskov, “The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens,” J. Math. Biol. 40, 2763 (2000).
http://dx.doi.org/10.1007/s002850050004
10.
10. J.-F. Joanny and S. Ramaswamy, “A drop of active matter,” J. Fluid Mech. 705, 4657 (2012).
http://dx.doi.org/10.1017/jfm.2012.131
11.
11. S. Hou, E. A. Burton, K. A. Simon, D. Blodgett, Y.-Y. Luk, and D. Ren, “Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold,” Appl. Environ. Microbiol. 73, 43004307 (2007).
http://dx.doi.org/10.1128/AEM.02633-06
12.
12. H. C. Berg, E. coli in Motion (Springer Verlag, 2003).
13.
13. E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601 (2009).
http://dx.doi.org/10.1088/0034-4885/72/9/096601
14.
14. J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, “Transport and collective dynamics in suspensions of confined swimming particles,” Phys. Rev. Lett. 95, 204501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.204501
15.
15. D. Saintillan and M. J. Shelley, “Orientational order and instabilities in suspensions of self-locomoting rods,” Phys. Rev. Lett. 99, 058102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.058102
16.
16. P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Graham, “Diffusion and spatial correlations in suspensions of swimming particles,” Phys. Rev. Lett. 100, 248101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.248101
17.
17. N. H. Mendelson, A. Bourque, K. Wilkening, K. R. Anderson, and J. C. Watkins, “Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets,” J. Bacteriol. 181, 600609 (1999).
18.
18. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, “Self-concentration and large-scale coherence in bacterial dynamics,” Phys. Rev. Lett. 93, 098103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.098103
19.
19. A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, “Concentration dependence of the collective dynamics of swimming bacteria,” Phys. Rev. Lett. 98, 158102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.158102
20.
20. T. Ishikawa, N. Yoshida, H. Ueno, M. Wiedeman, Y. Imai, and T. Yamaguchi, “Energy transport in a concentrated suspension of bacteria,” Phys. Rev. Lett. 107, 028102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.028102
21.
21. J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Goldstein, “Fluid dynamics of bacterial turbulence,” Phys. Rev. Lett. 110, 228102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.228102
22.
22. G. Subramanian and D. L. Koch, “Critical bacterial concentration for the onset of collective swimming,” J. Fluid Mech. 632, 359400 (2009).
http://dx.doi.org/10.1017/S002211200900706X
23.
23. R. A. Simha and S. Ramaswamy, “Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles,” Phys. Rev. Lett. 89, 058101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.058101
24.
24. D. Saintillan and M. J. Shelley, “Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations,” Phys. Rev. Lett. 100, 178103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.178103
25.
25. D. Saintillan and M. J. Shelley, “Instabilities, pattern formation, and mixing in active suspensions,” Phys. Fluids 20, 123304 (2008).
http://dx.doi.org/10.1063/1.3041776
26.
26. C. Hohenegger and M. J. Shelley, “Stability of active suspensions,” Phys. Rev. E 81, 046311 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046311
27.
27. B. Ezhilan, A. A. Pahlavan, and D. Saintillan, “Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria,” Phys. Fluids 24, 091701 (2012).
http://dx.doi.org/10.1063/1.4752764
28.
28. T. V. Kasyap and D. L. Koch, “Chemotaxis driven instability of a confined bacterial suspension,” Phys. Rev. Lett. 108, 038101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.038101
29.
29. T. V. Kasyap and D. L. Koch, “Instability of an inhomogeneous bacterial suspension subjected to a chemo-attractant gradient,” J. Fluid Mech. 741, 619657 (2014).
http://dx.doi.org/10.1017/jfm.2013.628
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4901958 for details on the preparation of bacterial suspensions, movies of the contact-line region of evaporating sessile drops containing wild-type (supplementary movie 1), smooth-swimming (supplementary movie 2), and incessantly tumbling E. coli cells (supplementary movie 3), and the movie of the contact-line region of non-evaporating drop containing wildtype E. coli cells (supplementary movie 4). [Supplementary Material]
31.
31. H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B 106, 13341344 (2002).
http://dx.doi.org/10.1021/jp0118322
32.
32. A. Be'er and R. M. Harshey, “Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface,” Biophys. J. 101, 10171024 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.07.019
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/11/10.1063/1.4901958
Loading
/content/aip/journal/pof2/26/11/10.1063/1.4901958
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/11/10.1063/1.4901958
2014-11-18
2016-12-09

Abstract

The near-contact-line dynamics of evaporating sessile drops containing live cells is studied experimentally. The evaporation of the drop together with its pinned contact-line drives a radially outward fluid flow inside the drop concentrating the suspended cells near the contact-line. Our experiments reveal a collective behavior of the concentrated bacterial population near the contact-line appearing in the form of spatially periodic “bacterial jets” along the circumference of the drop. Based on a physical analysis of the continuum equations of bacterial suspensions, we hypothesize that the patterns result from a concentration instability driven by the active stress of swimming bacteria.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/11/1.4901958.html;jsessionid=7Nb48ZZzGdq_LNVD0YHX7wob.x-aip-live-06?itemId=/content/aip/journal/pof2/26/11/10.1063/1.4901958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/11/10.1063/1.4901958&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/11/10.1063/1.4901958'
Right1,Right2,Right3,