Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/12/10.1063/1.4902820
1.
1.G. Liger-Belair, R. Cilindre, R. D. Gougeon, I. Lucio, P. Jeandet, and P. Schmitt-Kopplin, “Unraveling different chemical fingerprints between a champagne wine and its aerosols,” Proc. Natl. Acad. Sci. U. S. A. 106, 1654516549 (2009).
http://dx.doi.org/10.1073/pnas.0906483106
2.
2.A. H. Woodcock and M. M. Gifford, “Sampling atmospheric sea-salt nuclei over the ocean,” J. Mar. Res. 8, 177 (1949).
3.
3.A. H. Woodcock, “Atmospheric salt particles and raindrops,” J. Meteorol. 9, 200 (1952).
http://dx.doi.org/10.1175/1520-0469(1952)009<0200:ASPAR>2.0.CO;2
4.
4.A. H. Woodcock, C. F. Kientzler, A. B. Arons, and D. C. Blanchard, “Giant Condensation Nuclei from Bursting Bubbles,” Nature 172, 1144 (1953).
http://dx.doi.org/10.1038/1721144a0
5.
5.E. L. Andreas, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, “The spray contribution to net evaporation from the sea: A review of recent progress,” Boundary-Layer Meteorol. 72, 352 (1995).
http://dx.doi.org/10.1007/BF00712389
6.
6.G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. ODowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, 139 (2011).
http://dx.doi.org/10.1029/2010RG000349
7.
7.D. C. Blanchard, “The electrification of the atmosphere by particles from bubbles in the sea,” Prog. Oceanogr. 1, 73 (1963).
http://dx.doi.org/10.1016/0079-6611(63)90004-1
8.
8.F. Knelman, N. Dombrowski, and D. M. Newitt, “Mechanism of the bursting of bubbles,” Nature 173, 261 (1954).
http://dx.doi.org/10.1038/173261a0
9.
9.H. Lhuissier and E. Villermaux, “Bursting bubble aerosols,” J. Fluid Mech. 696, 544 (2012).
http://dx.doi.org/10.1017/jfm.2011.418
10.
10.O. Stuhlman, “The mechanics of effervescence,” Physics 2, 457466 (1932).
http://dx.doi.org/10.1063/1.1745071
11.
11.F. MacIntyre, “Flow patterns in breaking bubbles,” J. Geophys. Res. 77, 52115228 (1972).
http://dx.doi.org/10.1029/JC077i027p05211
12.
12.D. E. Spiel, “More on the births of jet drops from bubbles bursting on seawater surfaces,” J. Geophys. Res. 102, 58155821 (1997).
http://dx.doi.org/10.1029/96JC03582
13.
13.E. R. Lewis and S. E. Schwartz, in Sea Salt Aerosol Production. Mechanisms, Methods, Measurements, and Models, Geophysical Monograph (American Geophysical Union, Washington, DC, 2004), Vol. 152.
14.
14.S. Hayami and Y. Toba, “Drop production by bursting of air bubbles on the sea surface (I) experiments at still sea water surface,” J. Oceanogr. Soc. Jpn. 14, 145150 (1958).
15.
15.J. Wu, “Spray in the atmospheric surface layer: Laboratory study,” J. Geophys. Res. 78, 511519 (1973).
http://dx.doi.org/10.1029/JC078i003p00511
16.
16.J. M. Boulton-Stone and J. R. Blake, “Gas bubbles bursting at a free surface,” J. Fluid Mech. 254, 437466 (1993).
http://dx.doi.org/10.1017/S0022112093002216
17.
17.D. E. Spiel, “On the births of jet drops from bubbles bursting on water surfaces,” J. Geophys. Res. 100, 49955006 (1995).
http://dx.doi.org/10.1029/94JC03055
18.
18.L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14, 30003008 (2002).
http://dx.doi.org/10.1063/1.1494072
19.
19.É. Ghabache, T. Séon, and A. Antkowiak, “Liquid jet eruption from hollow relaxation,” J. Fluid Mech. 761, 206219 (2014).
http://dx.doi.org/10.1017/jfm.2014.629
20.
20.Y. Toba, “Drop production by bursting of air bubbles on the sea surface (II) theoretical study on the shape of floating bubbles,” J. Oceanogr. Soc. Jpn. 15, 121130 (1959).
21.
21.B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403, 401404 (2000).
http://dx.doi.org/10.1038/35000151
22.
22.D. Bartolo, C. Josserand, and D. Bonn, “Singular jets and bubbles in drop impact,” Phys. Rev. Lett. 96, 24501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.124501
23.
23.J. B. Keller and M. J. Miksis, “Surface tension driven flows,” SIAM J. Appl. Math. 43, 268277 (1983).
http://dx.doi.org/10.1137/0143018
24.
24.F. H. Zhang and S. T. Thoroddsen, “Satellite generation during bubble coalescence,” Phys. Fluids 20, 022104 (2008).
http://dx.doi.org/10.1063/1.2835664
25.
25.G. Liger-Belair, S. Villaume, C. Cilindre, G. Polidori, and P. Jeandet, “CO2 volume fluxes outgassing from champagne glasses in tasting conditions: Flute versus coupe,” J. Agric. Food Chem. 57, 49394947 (2009).
http://dx.doi.org/10.1021/jf900804j
26.
26.G. Liger-Belair, A. Conreux, S. Villaume, and C. Cilindre, “Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses,” Food Res. Int. 54, 516522 (2013).
http://dx.doi.org/10.1016/j.foodres.2013.07.048
27.
27.A. Bosso, D. Salmaso, E. De Faveri, M. Guaita, and D. Franceschi, “The use of carboxymethylcellulose for the tartaric stabilization of white wines, in comparison with other oenological additives,” Vitis 49, 9599 (2010).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/12/10.1063/1.4902820
Loading
/content/aip/journal/pof2/26/12/10.1063/1.4902820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/12/10.1063/1.4902820
2014-12-08
2016-12-08

Abstract

Bubbles at a free surface usually burst in ejecting myriads of droplets. Focusing on the bubble bursting jet, prelude for these aerosols, we propose a simple scaling for the jet velocity and we unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties. We demonstrate that droplets ejection unexpectedly changes with liquid properties. In particular, using damping action of viscosity, self-similar collapse can be sheltered from capillary ripples and continue closer to the singular limit, therefore producing faster and smaller droplets. These results pave the road to the control of the bursting bubble aerosols.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/12/1.4902820.html;jsessionid=bIqF2pSIA50O4hpXEuMdaTKj.x-aip-live-03?itemId=/content/aip/journal/pof2/26/12/10.1063/1.4902820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/12/10.1063/1.4902820&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/12/10.1063/1.4902820'
Right1,Right2,Right3,